
355

GENERATING DECISION RULES BY REINFORCEMENT LEARNING FOR A
CLASS OF CROP MANAGEMENT PROBLEMS

F. GARCIA, R. MARTIN-CLOUAIRE

Unité de Biométrie et Intelligence Artificielle, INRA, Toulouse, France
E-mail: {fgarcia, rmc}@toulouse.inra.fr

G. L. NGUYEN

Faculty of Information Technology, Hanoi Univ. of Technology, Hanoi, Vietnam
E-mail: giangnl@it-hut.edu.vn

ABSTRACT

This paper addresses the questions of generating near optimal management strategies for a
class of crop management problems. Two approaches are presented. They provide strategies
under the form of a timely-structured set of decision rules. Both rely on a formalization of the
problem as a finite-horizon Markov decision process and use stochastic optimization tech-
niques that belong to the reinforcement learning family of algorithms. The basic idea consists
in combining the dynamic programming principle with an iterative evaluation mechanism that
exploits a simulator of the crop production system. The two approaches enable to deal effi-
ciently with the large size and continuous nature of the state and decision spaces. The first
method uses a CMAC discretization methods of these spaces to represent compactly the worth
of state-decision pairs and ultimately extracts the decision rules constituting the strategy. The
second method generates directly decision rules having fuzzy (flexible) antecedents.

1. INTRODUCTION

Crop production systems are natural systems that respond to both uncontrollable factors and
technical operations that are decided by a human agent at particular times and in relation to
the current state of the system. In order to support farmers in making a rational choice of
actions at execution time, it is convenient to specify the decision-making behavior over the
whole production period through a management strategy elaborated beforehand. The external
form of a strategy has to be simple and compact for several practical reasons:

- making them intelligible (for easing their communication);
- enabling their application without the support of any computational device (which is the

usual setting in farms).

Constraining strategy to take a simple form may induce some loss of information (and thus
sub-optimality in theory) but it is still preferable given the importance of the above require-
ments. Simplicity is, in a way, a means to avoid over precision in the definition of strategies,
acknowledging the imperfection and incompleteness of the knowledge used to build them.

In this paper, the sub-class of problems exemplified by the winter wheat management problem
is considered. In this case a strategy can be defined as a temporally structured set of rules of
the form if situation then action and we address the problem of generating them automatically.
We assume that a dynamical model of the biophysical system is given. The model is
implemented in a simulator that is able to respond to time varying climatic factors and to a

356

sequence of technical operations over a given temporal horizon. The problem is to build a
management strategy that would enable optimal decisions about these operations over the
horizon considered. The optimality of the rule-based strategy is defined in terms of a value
function that we want to maximize in expectation in order to take into account the uncertainty
in the climatic factors.

Two strategy construction methods are presented here. They rely on a formalization of the
decision process as a finite-horizon Markov decision process (MDP). Both use stochastic
optimization techniques belonging to the reinforcement learning family of algorithms. The
basic idea consists in combining dynamic programming approaches with an iterative
evaluation mechanism that exploits the simulator of the biophysical system. Besides
reinforcement learning algorithms the first method uses a discretization method of the
decision and state spaces to represent compactly the worth of state-decision pairs and
ultimately extracts the decision rules constituting the strategy. The second method uses
reinforcement learning to generate directly decision rules having fuzzy (flexible) antecedents.
The learning technique is combined with a refinement process that progressively modifies the
granularity of the rules by splitting those that are not specific enough.

2. INTRODUCTION TO REINFORCEMENT LEARNING

Markov Decision Problems (MDP)
We consider sequential decision problems that can be modeled as Markov Decision Problems
(Kennedy,1988) in a finite-horizon setting. Within this representation, the decision process
can be divided into a sequence of N decision stages. Each stage i has an associated state space
Si and decision space Di, and these spaces Si and Di are respectively characterized by a set of
state and decision variables. A trajectory of this decision process is the result of choosing an
initial state s in S1 and applying a decision d from s to s’ in S2 , and so on until SN.

Two important characteristics of MDP models concern the Markov property of the uncertain
dynamics and the objective function. The Markov property requires that the stochastic
transition from s in Si to s’ in Si+1 given the decision d in Di is completely determined by the
probability Pi (s’ | s, d). Concerning the objective function, we assume that the criterion to be
maximized can be represented as the expected value of an additive objective function V =
E(r1+...+rN) where the ri terms are local rewards associated to each transition (s,d,s’) from Si
to Si+1 along the trajectory. Of course, this criterion may depend only on the final state (for
instance the yield). Furthermore, it can be the result of a number of calculations (veto,
weighted sum, etc.) and thus can aggregate different performance measures.

A policy is a function that maps states to decisions. For finite-horizon problems, such a policy
Π can be represented as a set of sub-policies {Π1,...,ΠN}. Each sub-policy Πi is defined as a
function which maps state s in Si to decision d in Di. Hence, given a policy and an initial state
s in S1 we are able to determine step after step until harvest, what are the decisions to apply to
the crop, depending on the current state that depends itself on the initial state, on previous
decisions and on the uncertain weather. Considering a MDP and an objective function, the
question is then to define and generate an optimal policy Π that, for any initial state s in S1
maximizes VΠ = E(r1+...+rN | Π).

Winter wheat management as a MDP
To give a concrete example of agricultural MDP let us consider the case of a winter wheat
crop production on a field (Garcia, 1999). Within the MDP representation, winter wheat crop

357

management can be divided into a sequence of N = 4 decision steps: sowing, first and second
nitrogen supply and harvest. The corresponding state and decision spaces are defined by the
state and decision variables presented in Table 1. The state variables for the 2 nitrogen
supplies are retained for their capacity to summarize the past trajectory of the process at the
current steps, and thus to approach the Markov property as close as possible.

Sowing 1st N application 2nd N application Harvest

State
Variables

- sowing time dS - tillering dT
- nb of plants NP

- residual N in soil Ns
- start of stem
 elongation d1cm
- aerial biomass
ba1cm

- post harvest N
 in soil PHN
- yield

Decision
Variables

- seed rate qS
- wheat cultivar vS

- date dN1
- quantity qN1

- date dN2
- quantity qN2

TABLE 1: State spaces and decision spaces of the MDP model.

It is assumed that the farmer’s goal is to maximize yield, minimize production costs (inputs)
and to keep nitrogen leftover after harvest (PHN) below a given threshold value. The costs are
represented by 3 variables taking negative values: rSowing, rN1 and rN2 which are functions of
qS, qN1 and qN2 respectively. The yield and environmental constraints are combined into a
gain RHarvest that is equal to a function of the yield when the value of the post-harvest-nitrogen-
in-soil variable PHN is less than 30kg/ha and is equal to 0 otherwise. In this MDP, the
criterion to maximize is given by VΠ = E(rSowing + rN1 + rN2 + RHarvest | Π).

Finite-horizon Dynamic Programming and reinforcement Learning
The automatic generation of optimal strategies maximizing VΠ could theoretically be done by
using a finite-horizon dynamic programming algorithm. This algorithm is based on the

classical Bellman’s optimality equations on value functions Vi mapping Si to IR.

where VN is the terminal value function defined on SN . From the optimal value function VΠ =
{V1, ..VN } solution of (1), the optimal policy Π = {Π1,...,ΠN} is then determined by

Unfortunately, this algorithm cannot be applied directly in some problems where:

- most of the state and decision variables have continuous domains, preventing the use of a
discrete representation of the Vi value functions;

- the transition probabilities of the stochastic biophysical process are not known and
difficult to estimate.

The reinforcement learning approach overcomes these two difficulties. It consists in learning
optimal policies by modifying iteratively a value function on the basis of a simulation-based
evaluation of the policy determined by the current value function. Today, reinforcement
learning is one of the major approaches to solve Markov decision problems with unknown
transition probabilities and/or with large state variable domains (Sutton and Barto, 1998).

())1()'()',,(),|'(max)(,
'

1∑ +∈
+=∈∀<∀

s
iiDdii sVsdsrdssPsVSsNi

i

())2()'()',,(),|'(maxarg)(,
'

1∑ +
∈

+=Π∈∀<∀
s

ii
Dd

ii sVsdsrdssPsSsNi
i

358

The most studied reinforcement learning algorithm is Q-learning, that is a direct adaptive
method since it does not require an explicit model of the Markovian process. The principle of
Q-learning in finite-horizon is to learn for each stage i an estimate of the Q-value

Qi(s,d) = E(∑
=

N

ij

rj | si = s, di = d), (3)

assuming that for the subsequent stages j > i an optimal policy is followed. Once these
estimates have been learned, the optimal policy can be obtained through (4):

In the finite-horizon setting, the estimates Qi are regularly updated after each simulated
trajectory. The trajectories are obtained by picking randomly an initial state in S1 and then
choosing at each stage i either the current optimal decision according to (4) or a random
decision in Si. In the case of discrete spaces Si and Di, the update rule for Qi is:

In this rule, (si, di, si+1) is the observed transition from stage i to stage i+1, and ri the
associated reward. The learning rate ε decays toward 0. The factor on the right hand side of ε
is the update factor, also called the temporal difference error, and denoted ∆Qi.

When the Si and Di domains are continuous or are very large, the approach cannot be applied
directly. Nevertheless the general Q-learning mechanism can be exploited in adapted
approaches that use compact representation of Qi and Πi and specific update rules based on
this mechanism. Two such approaches are presented in the next section.

3. TWO APPROACHES FOR GENERATING RULES

CMAC Representation and Automatic Rule Extraction
Linear architectures consist in representing the Qi value functions as a linear combination of a
small number of features φk

i that describe states and decisions:

Qi(s,d) = ∑
=

p

k 1

ωk
i φk

i(s,d). (6)

The CMAC representation (Sutton and Barto, 1998) is a simple linear architecture with binary
valued features. It is defined by uniform partitions of the state and decision domains which are
shifted with respect to each other, in order to define as many binary valued features as there
are cells in the partitions. This representation is classically used for estimating functions in a
continuous space. In that case the adaptation of the Q-learning algorithm is direct, the Qi(s,d)
terms being replaced by the weights ωk

i and the error terms being multiplied by the gradient
terms φk

i(si, di).

Parameterized representations like CMAC are not suitable with respect to intelligibility and
ease of applicability requirements. To remedy this we have developed an efficient procedure
to automatically extract simple decision rules from the CMAC Q-value functions.

This method can be decomposed in two steps. First, we use the RPART routines (Therneau
and Atkinson, 1997) for building binary regression trees Ti from the Qi CMAC value
functions mapping Si x Di to IR. Each tree is classically built as follows: a state or decision
variable that best splits the initial node Si x Di into two groups is found, and then this process

)4().,(maxarg)(, dsQsSsi i
Dd

ii
i∈

=Π∈∀∀

)5()).,()',(max.(),(),(11' iiiiidiiiiiii dsQdsQrdsQdsQ −++← ++ε

359

is recursively applied to each sub-node, until a minimum size is achieved or until no
improvement can be made. The fitted value of a node is its mean value, and the error of a
node is determined as its variance. Second, we extract from these Ti trees new binary decision
trees MAXTi defined by MAXTi (s) = argmaxd Ti(s,d). Since the outputs of Ti are the same for
all points that belong to the same node, the outputs of the binary trees MAXTi are not specific
values but rather intervals for each variable of Di. These binary trees MAXTi thus lead directly
to policies represented as a set of exclusive decision rules like:
Rule: if s∈ S then d∈ D (7)

where S is a subset of Si defined as a product of intervals for the different state variables of Si,
and where D is similarly defined as the product of intervals for the decision variables of Di.
The interpretation of such a rule is the following: when s∈ S the rule is active and any deci-
sion d in D can be chosen with approximately the same optimal effect. A typical rule might be
if dT∈ [Nov1, Jan1] and NP∈ [140,170] then dN1∈ [dT, dT+7] and qN1∈ [20,40].

Learning fuzzy rules
The other method presented here aims at directly learning strategies represented, for each
decision stage, by a set of fuzzy rules. Each rule has the form:

Ruler: if s is in Cr then d should be dr (8)

where Cr is a fuzzy set, that is a subset of the state space in which some elements have only
partial membership, and di is a value in the decision space. Such use of a fuzzy set is a
convenient way to express a flexible restriction on the set of states for which dr is an accept-
able decision. At any stage, applying the strategy means inferring the decision ds defined by:

)9().(.
1

1 ∑
=

−=
p

r
rr

s dsd αα

where p is the number of rules for the current stage, α = Σr=1,p αr(s), αr is the membership
function of Cr and αr(s) is the degree of compatibility between the condition Cr and the state s
(which may be multidimensional). A typical fuzzy rule might be:

if dT is around Dec1 and Np is around 180 then dN1 should be Dec15 and qN1 should be 15.

The learning process operates on a set of rules that are slightly different. They have multiple
consequents that, for any rule r, have the form: d should be dr

j
 with pertinence q[r,j]. The

degree q[r,j] represents the current estimate of the worth of chosing dr
j when the state s

matches the condition part of the rule r. These degrees are learned by using the basic iterative
mechanism at work in Q-learning. For each simulated trajectory, q[r,j] is updated by adding
an update factor ∆q[r,j] defined as follows (Jouffe, 1998):

[] ∑
=

∆=∆
p

m
mri ssQjrq

1
)()(.., ααε (10)

where ε and ∆Qi are the rate and the temporal difference error involved in formula (5):

),()',(max 11' iiiiidii dsQdsQrQ −+=∆ ++ .

The simulated decision di at stage i is derived by interpolation as in (9), by choosing for each
rule r a consequent dr

j. The term Qi(si,di) is computed similarly as the weighted sum over the p
rules of the pertinence degrees of the selected consequents:

360

)11(][).(.),(
1

1 ,∑
=

−=
p

r
iriii jrqsdsQ αα

where α = Σr=1,p αr(si). The term maxd’ Qi+1(si+1,d’) is computed as in (11) but for si+1 in place
of si and maxj q[r,j] in place of q[r,j].

For any stage the conditions of the rules constitute a fuzzy partition of the state space. Initially
the partition is coarse and the learning process is equipped with a mechanism that:

- identify periodically the region in which the set of recent ∆Qi values is most scattered;
- modify the partition so as to have a better covering in the region identified;
- modify existing rule, create new ones and initialize them.

The learning process stops when no more regions need to be refined according to a numerical
criterion. Ultimately, in each rule only the most pertinent consequent is kept, thus the learning
process returns rules of the form (8).

4. CONCLUDING REMARKS

We have presented in this paper two reinforcement learning methods to derive rule-based
optimal strategies of crop management by using a simulator of the crop production process.
Empirical studies conducted in the winter wheat production case have shown that the methods
are reliable and can generate satisfactory crop management decision rules. See (Garcia, 1999)
for a detailed report of experimental results with the first method. The second method which
is of more recent conception need to be further explored and compared with the first one.

The methods that have been presented are appropriate only if simple decision rules are
sufficient to express management strategies as in the winter wheat problem. This may likely
not be the case with other management problems. More hierarchical representations that
distinguish between overall planning of activities and operational realization of these may be
needed. Investigation in this direction is the subject of future work in our research team.

REFERENCES

Attonaty, J.-M., Chatelin, M.-H., Garcia, F. and Ndiaye, S. (1997) Using extended machine
learning and simulation technics to design crop management strategies, Proc. of
EFITA97, Copenhagen, DK.

Garcia, F. (1999) Use of reinforcement learning and simulation to optimize wheat crop
technical management, Proc. of MODSIM99, Hamilton, NZ.

Jouffe, L. (1998) Fuzzy Inference System Learning by Reinforcement Methods, IEEE
Transactions on Systems, Man, and Cybernetics, part C, vol. 28, n° 3, p 338-355.

Kennedy, J.O. (1986) Dynamic Programming: application to agricultural and natural
resources, Elsevier Applied Science, London.

Racsko, P., Szeidl, L., Semenov, M. (1991) A serial approach to local stochastic weather
models. Ecological Modelling, 57.

Sutton, R.S., Barto, A.G. (1998) Reinforcement Learning: an introduction, MIT Press,
Cambridge.

Therneau, T.M., Atkinson, E.J. (1997) An introduction to recursive partitioning using the
RPART routines, technical report, Mayo Foundation.

