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ABSTRACT

Leadbeater’s possum is an endangered species particular to mountain ash country in the
Central Highlands of Victoria. The species is threatened by the outbreak of catastrophic
wildfire and the loss of nesting sites resulting from logging trees younger than 150 years of
age. A stochastic dynamic programming approach to determine how much logging should be
foregone to enhance the probability of survival of the possum rests on estimates of the
probability of wildfire and the value of preservation of the possum.  Given the difficulty of
obtaining precise estimates,  solution methods using qualitative, fuzzy estimates are explored.

INTRODUCTION

Leadbeater’s possum is an arboreal marsupial thinly scattered in the montane ash forest of the
Central Highlands of Victoria, Australia. The species relies on access to trees which are
typically at least 200 years of age  with hollows sufficiently large for nesting. Current logging
rotations of about 80 years threaten the survival of the possum. It is officially listed as an
endangered species and is listed under Victoria's Flora and Fauna Guarantee Act.
Leadbeater’s possum has a special status with the Victorian public in that it is one of
Victoria's two faunal emblems. It is clear that logging practices which would maximise the
probability of survival of Leadbeater’s possum are different from those which would
maximise the net present value of timber production alone. Questions arise as to whether
logging should be excluded from some parts of the forests which are particularly favourable
habitat for the possum, or whether it is both feasible and economic to modify logging
practices to increase the probability of survival of the possum whilst still obtaining a return
from timber. The problems to be considered are, for a homogeneous area of forest, what
would be the optimal age at which to cut trees, and whether any cut should be total or partial.
Stochastic events are possum survival and the outbreak of a wildfire. Logging decisions have
to be taken now which may have irreversible consequences for the possum, taking account of
logging decisions and the risks of species extinction and of wildfire in all future periods.

A STOCHASTIC MARKOV DECISION PROCESSES (MDP) APPROACH

Specification [Kennedy, 1999]
The objective is to find the sequence of harvesting decisions made at 50-year intervals which
leads to the maximum expected present value of returns from timber production and habitat
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preservation in all future 50-year periods. Land is kept perpetually forested. Either all trees
are the same age, or 10 per cent of trees have been saved from previous clearfelling in order to
develop a stock of hollow-bearing trees for nesting sites and are therefore older. The latter
trees are referred to as being in the ‘old’ 10 per cent class, and aged a10. The remaining ‘new’
trees in the 90 per cent class are aged a90. One of three harvesting decisions is made at each
decision stage: clearfell all trees (d=1); clearfell only the ‘new’ 90 per cent category of tree
(d=2); or leave all trees standing (d=3). The harvesting decision is implemented 50 years after
the decision has been taken, just before the next decision stage. Two stochastic events may
occur over the 50 years between one decision stage and the next. One is an intense wildfire
which destroys much of the forest (i=1). All of the trees in the 10 per cent class are destroyed,
and enough of the trees in the 90 per cent class survive after salvage operations to become a
new 10 per cent class if older than 50 years. Any fire occurs immediately before a harvesting
decision would have been implemented. The way in which the age of trees in each category is
determined for the next decision stage after 50 years is shown in Table 1.

TABLE 1: Tree age by tree class after 50 years.
i=0 (no fire) i=1 (fire)

Cut decision Cut decision

Tree class d=1 d=2 d=3 d=1 d=2 d=3
100% 90% 0% 100% 90% 0%

‘New’ (90%)
‘Old’ (10%) a90=50
‘Old’ (10%) a90>50

0
0
0

0
a10+50
a10+50

a90+50
a10+50
a10+50

0
0
a90+50

0
0
a90+50

0
0
a90+50

The other stochastic event is survival of the possum to the next decision stage. The probability
of survival, shown in Table 2, is greater the older the trees in each class, if there is no
harvesting, and if there is no wildfire. Obviously survival to the next decision stage is only
possible if the possum has survived to the current decision stage.

TABLE 2  Probability that Leadbeater’s possum survives to the next decision stage.
i=0 (no fire) i=1 (fire)

Tree Age (Years) d=1 d=2 d=3 All d
90% 10% 100% 90% 0%

a90 < 200
a90 < 200
a90 ≥ 200

a10 < 200
a10 ≥ 200
a10 ≥ 200

0.000
0.000
0.000

0.000
0.125
0.410

0.000
0.250
0.820

0.000
0.125
0.410

The return from harvesting is the value of the age-dependent yields of three grades of timber,
less regeneration costs for the next cohort of trees. If wildfire occurs, a proportion of all trees
is salvaged. The probability of wildfire in any year is estimated to be 0.01, which translates to
a probability of at least one fire occurring in 50 years of 0.40. In order to keep the number of
states of the system to a minimum, any tree age greater than 300 is classified as 300. Any
changes in merchantable volume or nesting site suitability after 300 years of age are
insignificant. The expected existence value of Leadbeater’s possum to the Victorian
community is calculated as the product of the probability of survival over most of the ensuing
50 years, before cutting or wildfire can occur, and the mean amount Victorians are estimated
to be willing to pay for preservation of the species. This assumes a linear relationship between
expected existence value and probability of survival.

The Markov Decision Processes (MDP) framework

The standard MDP model [Puterman, 1994] is defined by: set T ⊆ N of decision stages for
which when T = {0,...,N} is finite, N is the horizon of the problem and for each stage t, a
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finite state space, St. Sets As,t (finite) of available actions in state s at stage t are defined (these
sets are denoted As when they are independent of t) as well as rewards rt(s,a,s’) (that may be
negative) that are obtained after a has been applied in state s and resulted in s’ and probability
distributions pt(.|s,a) describing the uncertainty about the possible successor states (in St+1) of
s ∈ St when a ∈ As,t  is applied.

A decision rule dt is an application from St to ∪ s ∈ St As,t assigning an action to each possible
state of the world in stage t. A policy δ  is, in the finite horizon case, a N-tuple of decision
rules δ = (d1,..., dN). Let ∆ = D1 × ... × DN be the set of applicable policies. ∆ is the cross-
product of the sets of applicable decisions for each stage. In the stationary infinite horizon
case,  the parameter t has no influence on the decision problem. Thus, a policy δ is nothing
but the repetition of an identical decision rule d. A policy δ, applied in an initial state s0
(together with the probability distributions) defines a Markov chain that describes the
sequence of states occupied by the system. The value of a policy in a given state is the
expected sum of the rewards gained along the possible trajectories. In the finite horizon case :

v(s0,δ) = E[Σt=0..N γt.r t(st, d t(st))] (1)

When the horizon is infinite, the discounted value of a policy is defined by :

v(s0,δ) = E[Σt=0..∞  γt.r t(s, d (s)) ] (2)
where 0<γ≤1 is the discount factor.

Solving a MDP amounts to finding a policy δ* maximizing v(s0,.). The dynamic
programming methods are based on the decomposition of the sequential decision problem
into one-stage decision problems, by making use of Bellman's equations [Bellman, 1957]. In
the finite horizon case, optimal policies can be computed by the backwards induction
algorithm which solves the  following equations in decreasing order of t.

vt(s) = {Σs' ∈ St+1 p(s'|s,a).(r(s,a,s') + γ.vt+1(s')) }  t = N, …, 1 (3)

In the discounted infinite horizon case, optimal policies (which are stationary) can be obtained
as fixed points of equation (4) below. Methods such as the value iteration algorithm or others
(see [Puterman, 1994]), can be used to compute optimal policies. Q(s,a) represents the
expected value of performing action a in state s. This is to be distinguished from v(s), which
is the expected value of performing the optimal action in state s. Q(s,a) is defined by

Q(s,a) = {Σs' ∈ St+1 p(s'|s,a).(r(s,a,s') + γ.v(s')) }   (4)

and ∀ s ∈ S, v(s) =maxa ∈ As Q(s,a).

It is easy to get an optimal, stationary, policy δ* from Q, since δ*(s) = argmaxa Q(s,a).

Resolution
In [Kennedy, 1999], the model parameters are estimated from either economic values (price
of timber of different age categories, regeneration costs, discount rate), or questionnaires
(willingness of Victoria citizens to pay for the survival of Leadbeater’s possum).
r(s,a,s')=rc(s,a,s')+rp(s,a,s') is the sum of the return from timber cut and a monetary value
attached to possum’s survival (each year).

Of course rp(s,a,s') can only be estimated approximately. A  contingent valuation survey of a
large sample of the population resident in Victoria was conducted by questionnaire,  (see
Jakobsson and Dragun, 1996). Under alternative assumptions,  the individual willingness to
pay ranged from A$6.40 to A$40.04. Of course, the obtained optimal policies  depend heavily
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on this parameter, as well as on the discount factor . Results are listed in table 5. See
[Kennedy, 1999] for complete details.

A QUALITATIVE APPROACH OF THE PROBLEM

Possibilistic Markov Decision Processe(ΠΠΠΠ-MDP) framework
[Dubois & Prade, 1995] proposed an ordinal counterpart, based on possibility theory, of the
expected utility theory for one-stage decision making. In this framework, S and X are
respectively the (finite) sets of possible states of the world before and after an action is taken
(St and St+1 in the multistage case). L is a finite totally ordered (qualitative) scale, with lowest
and greatest elements denoted 0L and 1L respectively. L will be used for assessing both
uncertainty and preference degrees. The uncertainty of the agent about the effect of an action
a taken in state s is represented by a possibility distribution π(.|s,a) : X → L. π(x|s,a) measures
to what extent x is a plausible consequence of a in s. π(x|s,a) = 1L means that x is completely
plausible, whereas π(x|s,a)=0L means that it is completely impossible. Stage returns are
expressed in terms of levels of satisfaction by a qualitative utility function µ: S×A×X→L.
µ(s,a,x)=1L means that applying a in s and obtaining x is completely satisfactory, whereas if
µ(s,a,x)=0L, it is totally unsatisfactory. It should be noted that π is normalized (there shall be
at least one completely possible state of the world), but µ may not be (it can be that no
consequence is fully satisfactory).

[Dubois & Prade, 1995] proposed the two following qualitative decision criteria:
Qopt(s0,a) = maxx∈X min{ π(x|s0,a), µ(s0,a,x) } (5)

Qpes(s0,a) = minx∈X max {n(π(x|s0,a)), µ(s0,a,x) }  (6)
where n is the order reversing map of L.

Qopt can be seen as an extension of the maximax criterion which assigns to an action the utility
of its best possible consequence. On the other hand, Qpes is an extension of the maximin
criterion which corresponds to the utility of the worst possible consequence (both Qopt and
Qpes shall be maximized). Qpes measures to what extent every plausible consequence is
satisfactory, while Qopt measures to what extent there exists a satisfactory plausible
consequence. Qopt corresponds to an adventurous (optimistic) attitude towards uncertainty,
whereas Qpes is conservative (cautious). In [Sabbadin et al., 1998], [Sabbadin, 2001], the
possibilistic qualitative decision theory has been extended to multistage decision making. We
have a similar property as in the stochastic case, that is that the optimal possibilistic strategy
can be obtained from the solution of the following sets of equations (for all s) :

Qt*opt(s,a) = maxs'∈S min{πt(s'|s,a), ut+1
opt(s'), µ t(s,a,s’)}, (7)

Qt*pes(s,a) = mins'∈S min{max {n(πt(s'|s,a)), ut+1  pes(s')}, µ t(s,a,s’)}, (8)
where u t+1 pes(s) = maxa Q t+1*pes(s,a) and u t+1

opt(s)  = maxa Q t+1*opt(s,a).

Equations (7) and (8) extend respectively equations (5) and (6) to the sequential case and
allow account to be taken of intermediate degrees of satisfaction, aggregated by a minimum
along the possible trajectories. Indeed, (7) and (8) can be seen as implementations of a
Dynamic Programming approach to the computation of the possibilistic utilities of (multi-
stage) policies in the spirit of (5) and (6) :

Qopt(s0, δ) = maxτ min{π(τ|s0,δ), µ(s0, δ,τ)} (9)
Qpes(s0, δ) = minτ max {n(π(τ|s0,δ)), µ(s0, δ,τ)}  (10)

Where τ and δ are respectively trajectories and decision rules, π and µ being evaluated by the
overall minimum of the instantaneous qualitative transition possibilities and returns. Two
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possibilistic versions of the value iteration algorithm have been defined in [Sabbadin, 2001].
These algorithms converge to the actual values (optimistic or pessimistic) of Q* and u* in a
finite number of steps.

Optimal timber cutting in the possibilistic framework
Utility function. In the possibilistic framework, utility levels are considered as satisfaction
degrees (of performing a given action in a given state) rather than additive rewards. These
satisfaction degrees will be assumed to be independent of the obtained consequence (thus
being of the form µ(s,a) rather than µ(s,a,s’)). Satisfaction degrees depend both on the
survival status of the possum and on the timber production level. States are indeed of the form
(Survival, a90, a10), but in the qualitative approach we consider that a10, the age of the oldest
trees, does not influence the timber revenue enough to be considered in the evaluation. If we
assume that uncertainty levels and satisfaction levels are expressed on an ordinal scale
L={0,1,2,3,4,5}, then µ(s,d) is represented in table 3, where s=(Survival,a90).

TABLE 3. Satisfaction degree of cutting d% of trees, knowing a90 and Survival.
Survival =1 Survival=0

d \ a90 0 50 100 150 200 250 300 d \ a90 0 50 100 150 200 250 300
100% 4 4 5 5 5 4 4 100% 2 2 3 3 3 2 2
90% 3 3 4 4 4 3 3 90% 1 1 2 2 2 1 1
0% 1 1 1 1 1 1 1 0% 0 0 0 0 0 0 0

Possibilistic transition functions. Let us give the possibilistic transition functions π(sj|si,d,i).
The tables are built empirically from the “qualitative” knowledge about the effects of actions.
For all a∈A Succ(a)=min{a+50,300} defines the “normal” successor age, when trees are not
cut and fire does not occur. Then, π(ai’|a90,a10,d,i) can be computed for both categories of
trees, decision and fire event:
π(ai’|a90,a10,d,i)=max{min{π(ai’|a90,a10,d,i=0), π(i=0)}, min{π(ai’|a90,a10,d,i=1), π(i=1)}} (11)

where  π(a90’|a90,a10,d,i=0) = 5 if a90’= Succ(a90) and 0 if not. π(a10’|a90,a10,d,i=0) = 5 if a10’=
Succ(a10) and 0 if not. π(a90’|a90,a10,d,i=1) = 5 if a90’= 0 and 0 if not. π(a10’|a90,a10,d,i=1) = 5 if
a10’= Succ(a90) and 0 if not. π(i=0) = 5 and π(i=1) = 1 (we assume that fire is rather unlikely,
although not impossible). The possibility π(s’|s=1,a90,a10,d,i) that Leadbeater’s possum
survives next stage is shown below:

TABLE 4  Possibility that Leadbeater’s possum survives to the next decision stage
(only if a10≥200. π(s’=1) is uniformly 0 if a10<200)

i=0 (no fire) i=1 (fire)

π d=1 d=2 d=3 All d
100% 90% 0%

π(s’=1)
π(s’=0)

0
5

5
2

5
1

5
2

The overall transition function is defined by :
π(s’,a90’,a10’|s,a90,a10,d,i) = min{π(a90’|a90,a10,d,i), π(a10’|a90,a10,d,i), π(s’|s,d,i)} (12)

Results and interpretation.
The pessimistic and optimistic possibilistic optimal policies can be computed through the
previous section’s mechanism and are represented in table 5. Note that the pessimistic
approach amounts to considering the extinction of  Leadbeater’s possum as inevitable and
thus neglects it to the benefit of the pure maximization of timber revenue, as would  the
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stochastic approach with a low value for possums. The optimistic approach leads to an
optimal approach which is not obtained in any of the configurations considered in the
stochastic approach. Intuitively, it amounts to considering that 10% of the forest should be
reserved as a sanctuary in which satisfactory conditions are maintained for the possum.
Although original, this policy is an hybrid between the stochastic ones obtained for W=A$
40.04and rates of discount r=2% and r=4% respectively.

TABLE 5:  Optimal cutting strategies : W = willingness to pay for Possum’s survival, per
inhabitant. r = interest rate assumed for  the future (discount rate = 1-r).

State Decision - percentage cut after 50 years
Stochastic case Possibilistic case

Age of Trees S W=$6.30 W=$40.04 pessimistic optimistic

∀a90, a10
a90=0; a10≥200
a90=50; a10≥200

100≤a90≤150; a10≥200
200≤a90≤a10

0
1
1
1
1

r=4%
100
100
100
100
100

r=2%
100
100
100
100
100

r=0%
100
100
100
100

0

r=4%
100
100
100
100

90

r=2%
100

90
90
90

0

r=0%
100

0
90

0
0

decision
100
100
100
100
100

decision
100
90
90
90
90

CONCLUSION

In this paper we have proposed a qualitative approach to multistage decision making under
uncertainty, based on possibility theory. This kind of approach is especially suitable for
problems in which data (preferences, probabilities of transition) are missing or can only be
qualitatively estimated. It has been applied to a forest management problem where it has been
compared to a stochastic approach with estimated data.

What is most noticeable is that the results obtained in the possibilistic approach, although
different from those of the stochastic approach, are still comparable and seem quite
reasonable, for a considerably lower effort devoted to parameter estimation. Moreover, the
qualitative approach is very general, and may be applied to a wide range of problems
considering natural resources,  in which data estimation is a difficult problem and reasoning
with qualitative/approximate data is useful.

REFERENCES

Bellman, R.E. (1957), Dynamic Programming. Princeton University Press, 1957.

Dubois D. and Prade H. (1995), “Possibility theory as a basis for qualitative decision theory”.
Proc. of the 14th International Joint Conference on Artificial Intelligence (IJCAI’95), pp.
1925-1930, Montreal, Canada, 20-25 August, 1995.

Jakobsson, K. M. and A. K. Dragun (1996), Contingent Valuation and Endangered Species:
Methodological Issues and Applications.  Edward Elgar, Cheltenham, UK.

Kennedy, J. O. S. (1999), “The use of contingent valuation of species preservation in decision
analysis”, ed. S. Mahendrarajah, A. J. Jakeman, and M. J. McAleer, Modelling Change
in Integrated Economic and Environmental Systems, Wiley.

Puterman M.L. (1994), Markov Decision Processes. John Wiley and Sons, New York, 1994.

Sabbadin R., Fargier H; and Lang J. (1998), “Towards qualitative approaches to multi-stage
decision making”. International Journal of Approximate Reasoning, 19:441-471.

Sabbadin, R. (2001), “Possibilistic Markov Decision Processes”. To appear in Engineering
Applications of Artificial Intelligence.


