Simulating management policies on stock sum multiple m policies on stock supplied by multiple production units: **Application to a pig slurry** treatment plant

A. Hélias, F. Guerrin

Introduction

• Pig slurry:

- An heterogeneous product with an important polluting capacity,
- Development of intensive animal farming
- Organic wastes surpluses
- Treatment (regulation rules, environment)

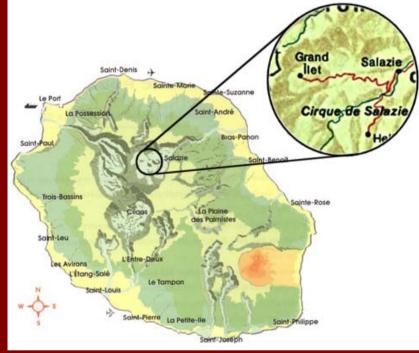
Contents of presentation

Application background

- Reunion Island distinctive features
- System description
- Supply policies
- Model description
 - Block diagram representation
 - Stock evolutions
 - Transportation organization
- Simulations
 - Specification of the scenarios
 - Comparison of supply policies

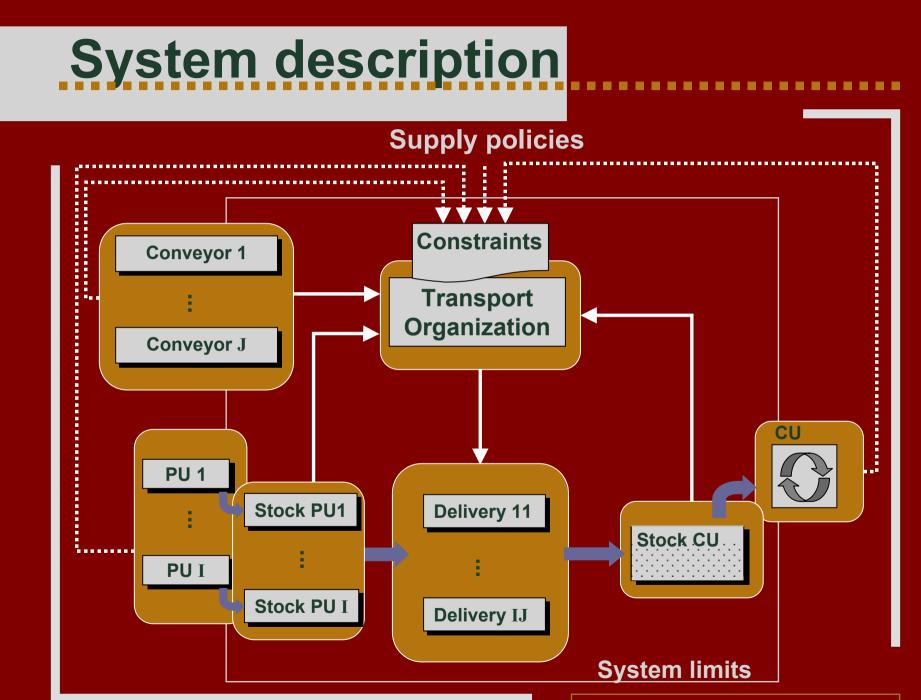
The case of Grand llet

- Many small intensive
 animal farms
- Slopes, rainfalls, urbanization, tourism...
 Iimited area for spreading
 Iimitation of transportation



 Treatment required to transform slurry into an exportable product

A collective slurry treatment plant project



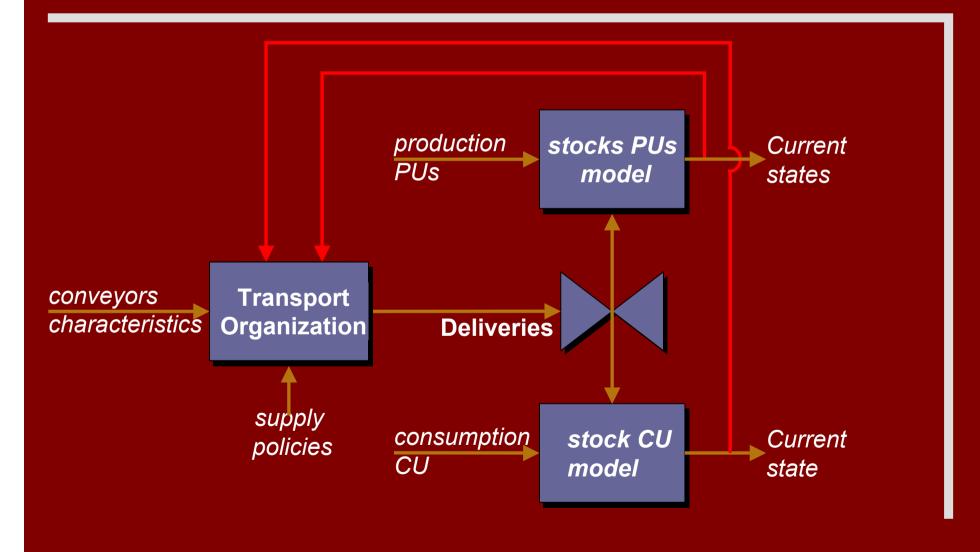
part I: Application background

Slurry policies

- "Who ?" and "When ?" mean "When should each production units perform a delivery?"
 - A fixed period basis: T policy
 - An alarm threshold: S policy
- "How much ?"
 - A fixed quantity: Q policy
 - A variable quantity to move state back to a predetermined level: R policy

	Т	S
Q	T - Q	S - Q
R	T - R	S - R

Block Diagram



part II: Model description

Hybrid dynamical system

- Process: the continuous part
 - Stock evolutions (PUs and CU): volume and concentrations
 - Ordinary differential equations: mass balance equation
- Transport organization: the discrete part
 - Transport actions (boolean)
 - Constraints

Stock evolutions

• Ordinary differential equation:

$$\frac{dV}{dt} = \sum_{m=1}^{M} Qin_m - \left(\sum_{n=1}^{N} Qout_n + Qover\right)$$

 $V(0) = v_0$

• with:

$$Qover = \begin{cases} \sum_{m=1}^{M} Qin_m - \sum_{n=1}^{N} Qout_n & \text{if } V \ge v_{\max} \text{ and } \sum_{m=1}^{M} Qin_m > \sum_{n=1}^{N} Qout_n \\ 0 & \text{otherwise} \end{cases}$$

Transport organization (1)

- Mixed-integer linear program (branch & bound)
- To each decision step
- Objective function:

$$Max \sum_{ijk} Pw_i \cdot x_{ijk}$$

- $x_{ijk} \in \{0,1\}$: delivery k from PU_i by conveyor j
- *Pw_i* ∈ [0,1]: cost accounting for a time delivery indicator in the case of policies T or S applied to the PU_i

Transport organization (2)

.

Constraint's examples

• PUs stock:

$$\sum_{jk} \operatorname{vc}_{j} \cdot x_{ijk} \leq Ph_{i}$$

CU stock:

$$\sum_{ijk} \operatorname{vc}_{j} \cdot x_{ijk} \leq P_{CU}$$

Conveyor cannot be at different places at the same time:

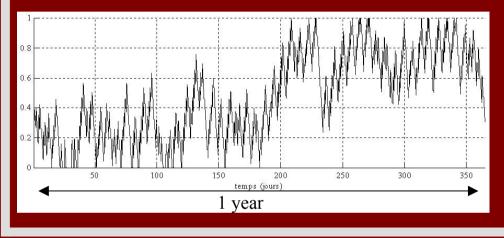
$$\sum_{i} x_{ijk} \leq 1 \forall j,k$$

Test scenarios

- Stock Consumption Unit: 350 m³
- 40 Production Units
- A collective conveyor (10 m³)
- Scenario 1:
 - PUs policy: T-R (fixed date and emptying the stocks),
 - CU policy: Q (fixed quantity processed each day).
- Scenario 2:
 - PUs policy: S-R (alarm threshold and emptying the stocks),
 - CU policy: R (refill the stock up to its limit capacity).

Example 1

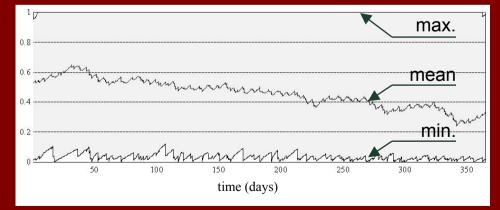
Stock evolution of the CU



Policies: PUs⇔T-R, CU⇔Q

Stock evolutions of the PUs

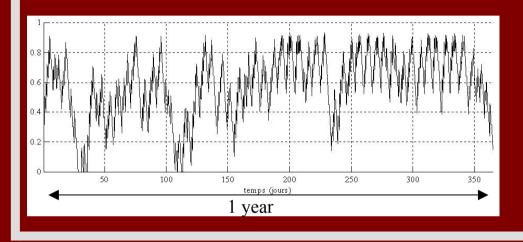
№ 1800 m³ overflowing in the environment



part III: Simulations

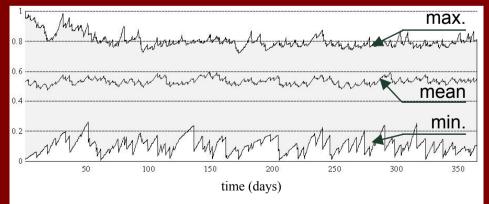
Stock evolution of the CU

Example 2



Policies: PUs⇔S-R, CU⇔R

Stock evolutions of the PUs



No slurry overflows to the environment

part III: Simulations

Simulation's result

- Collective supply permits a better use of available resources.
- Security increases with the CU stock capacity.
- Usefulness of a closed-loop control:
 - CU policy: R,
 - PUs policy: S-R.

Increase reactivity to deal with stock limitations.

Conclusion

• A hybrid dynamical system:

- Continuous part: Stock evolutions encoded as ODEs,
- Discrete part: Transport organization as a MILP.
- Application on the specific case of Grand llet:
 - Different policies and different parameter values,
 - Benefit of a closed-loop control.
- Perspectives:
 - Generalize this approach by a generic production/consumption model
 - Application to other problems (individual farm, interfarms transfers)