Computer demonstration: A general software system for dynamic programming.

Anders Ringgaard Kristensen
Royal Vet. and Agric. Univ.
Outline

- Introduction to dynamic programming and Multi-level hierarchic Markov processes
- The purpose of the software
- Facilities
- Description
- Example: A sow model
- Discussion
A Markov decision process

Stage 1	Stage 2	Stage 3
Stage length e.g. 1 reproduction cycle

At the beginning of each stage, the state, \(i \), of the sow is observed:

\(i = 1 \): Small litter size

\(i = 2 \): Average litter size

\(i = 3 \): Big litter size

The state is in this example defined by the value of only one state variable (trait)
Actions

- Having observed the state i, an action, d, is taken:
 - $d=1$: Keep the sow
 - $d=2$: Replace the sow at the end of the stage
Rewards

Depending on state i and action d, a reward r^d_i is gained:

<table>
<thead>
<tr>
<th>r^d_i</th>
<th>$d=1$ (Keep)</th>
<th>$d=2$ (Replace)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i=1$ (Small litter)</td>
<td>10,000</td>
<td>9,000</td>
</tr>
<tr>
<td>$i=2$ (Average)</td>
<td>12,000</td>
<td>11,000</td>
</tr>
<tr>
<td>$i=3$ (Big litter)</td>
<td>14,000</td>
<td>13,000</td>
</tr>
</tbody>
</table>
Depending on state i and action d a physical output m^d_i (in this case number of piglets is involved).

<table>
<thead>
<tr>
<th>m^d_i</th>
<th>$d=1$ (Keep)</th>
<th>$d=2$ (Replace)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i=1$ (Small litter)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>$i=2$ (Average litter)</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>$i=1$ (Big litter)</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>
Transition probabilities

Transitions between states are governed by transition probabilities p_{dij}^d.

p_{dij}^d	$d=1$ (Keep)		$d=2$ (Replace)			
	$j=1$	$j=2$	$j=3$	$j=1$	$j=2$	$j=3$
$i=1$	0.6	0.3	0.1	1/3	1/3	1/3
$i=2$	0.2	0.6	0.2	1/3	1/3	1/3
$i=3$	0.1	0.3	0.6	1/3	1/3	1/3

A policy s is a map (rule) assigning to each state an action. An example of a policy for this model is to replace if $i=1$ and keep if $i>1$. Thus, in functional notation: $s(1)=2$ ("Replace"), and $s(2)=s(3)=1$ ("Keep").

Problem: To determine an optimal policy.
What is ml-HMP

- **Benefits**
 - The curse of dimensionality
 - Decisions on multiple time scales
- A founder process which is an ordinary Markov decision process
- Each combination of state and actions may be extended to a child which is again a Markov decision process
- A child process may be further extended to a "grand child" level...
Further information

Purpose

- Apprentice level
 - Comprehension
 - Small examples
- Professional user
 - Real world models
 - Only intermediate
- No standard software: A bottle neck for application
Facilities, GUI

- Graphical user interface:
 - Visual editing of model structure
 - Icons for process, stage, state and action
 - Entering of parameters
 - Special icons for various “tricks”
The graphical interface
Facilities, functions

- Optimization
 - Criteria of optimality
 - Discounting
 - Average rewards over time
 - Average rewards over output
 - Policy iteration
 - Value iteration
- Markov chain simulation
Windows

- Process tree
- Optimization log
 - The iterations
 - Time spent on optimization
- Results
 - Optimal policy
 - Present (relative) values of actions
 - Future profitabilities
 - Editing of policies for Markov chain simulation
Technical description

- Model: Array of levels
- Level: Array of processes
- Process: Array of stages
- Stage: Array of states
- State: Array of actions
- Action:
 - Defined by child process
 - Defined by parameters
Plugins

- ModelProvider class (abstract)
 - Generates an entire model
 - Interface for installing and removing
 - Install into the “New” menu
Example: Sow model

- **Founder**
 - Stage: Life span of sow
 - State: Dummy
 - Action: Dummy

- **Child level 1**
 - Stage: A reproductive cycle: mating-mating
 - State: Estimated litter size potential & previous litter size
 - Actions: Boar 1, Boar 2
Example cont.

- Child level 2
 - Stages: Mating, gestation, suckling
 - State: Health, Health & infertile, litter size
 - Action: Mating policy, dummy, Keep-Replace
- Number of states: ~100,000
- Optimization: A few minutes
Discussion

- Visible models
 - Demonstration
 - Model development
- Export of data
- General versus specific software
- Model size