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Preface

In 1996 two of the authors organized a Nordic PhD course on Planning and Con-
trol of Animal Production at Farm Level. The third author, Nils Toft, attended the
course as a PhD student. As part of the material for the course, 5 textbook notes
were written and published as Dina Notes.

The notes were successfully used at the course in 1996, and afterwards they
have served as important input to the Master level course on Advanced Herd Man-
agement given at the Royal Veterinary and Agricultural University. A couple of the
notes have been slightly updated over the years, but basically the content has not
changed.

Over the years, the authors have had the wish to collect and update the material
in order to create an authoritative textbook covering more or less all aspects of herd
management from the basic to the advanced level. This preliminary edition is the
first attempt to realize this wish. Even though there is still a long way to go before
the work is done, it is our hope that the preliminary version will turn out to be
useful for the participants of various Herd Management courses.

The book is organized in two parts with basic herd management principles and
classical theories in part I, and the more advanced methods in part II. Furthermore,
the necessary mathematical and statistical theory is summarized in appendices for
easy reference.

Part I has been written with a bachelor level course in mind, and the contents
reflect what we think that any animal scientist should master, whereas Part II has
been written for a more advanced level for graduate students who wish to specialize
in Herd Management. Given the structural development in modern agriculture
with ever increasing herd sizes, we expect that the need for an advanced textbook
focusing directly on herd management will increase.

Compared to previous edition, the 2010 edition has been extended with a new
section on applications of linear programming in Chapter 10 and detailed compu-
tations in Example D.1. Finally, both volumes have been provided with compre-
hensive indexes for easy reference. Minor changes include correction of typos and
correction of misleading errors in Example 5.8.

Copenhagen, October 31, 2013

Anders Ringgaard Kristensen
Erik Jgrgensen
Nils Toft



This book has a home page at URL: http://www.dina.dk/~ark/book.htm
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Chapter 9

Decisions and strategies: A
survey of methods

9.1 Framework of the survey

In Chapter 1 we defined (Definition 1.2) the information needs for decision making
to include

1. The current state of the unit.

2. A production function describing the immediate production given stage, state
and decision and the distribution of the possible random term(s).

. The distribution of the future state given stage, state and decision.

3
4. All attribute functions relevant to the farmer’s preferences.
5. The utility function representing farmer’s preferences.

6

. All constraints of legal, economic, physical or personal kind.

The purpose of this chapter is to provide a general overview of techniques
available in the determination of optimal decisions and strategies.

The techniques will be described according to their ability to represent the
various kinds of necessary information listed above. Furthermore, their potentials
for integration of decisions at different levels and time horizons defined in Chapter
1 are discussed. It is not the purpose to describe the various methods in details,
but only to provide a general survey relating to the issues of the previous chapters.
Details about the methods are left for separate chapters.

9.2 Rule based expert systems

Research concerning expert systems is a development within the area called Artifi-
cial Intelligence (AI). The British Computer Society has defined expert systems as
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follows (cited from Dindorph, 1992): An expert system is regarded as the embod-
iment within a computer of a knowledge-based component from an expert skill in
such a form that the system can offer intelligent advice or take intelligent decision
about a processing function. A desirable additional characteristic, which many
would consider fundamental, is the capability of the system, on demand to justify
its own line of reasoning in a manner directly intelligible to the enquirer. The style
adopted to attain these characteristics is rule-based programming. This is just one
of many proposed definitions of expert systems.

The fundamental difference between the rule based systems, and the approach
that we have presented until now, is that instead of trying to model a system, the
rule based expert systems tries to model the expert, or rather the expert’s approach
to problem solving. Originally, the ambition within Al-research was to make gen-
eral problem solvers that could be used for any problem area, but this was realized
by most researchers within the area to be overambitious. The research efforts had,
however, led to new approaches towards problem solving, and within narrow prob-
lem (expert) domains, the approach showed some promising results.

Rule based expert systems have three components: a knowledge base contain-
ing the expert’s knowledge of the domain, an inference engine that decides how
and when to use the knowledge, and a user interface.

The knowledge base contains knowledge of a problem domain, as it is de-
scribed in text books, as well as expert knowledge, e.g. exceptions to general
rules, experiences from previous problems, and time-efficient approaches on how
to solve problems within the area. The knowledge base is an enhanced data base
that apart from data also contains logic rules for the connection between the items
in the knowledge base, e.g if « or y then z.

The inference machine contains the mechanism for deduction based on the
logical rules in the knowledge base. The deduction can use different inference
principles, such as backward chaining and forward chaining. In the rule showed
above, the inference machine would start out by finding the value of z, and given
the knowledge of z establish the value of x and y. Forward chaining would start
out by establishing the values of « and y and deduce the value of z subsequently.
In both cases the unknown values are found either by a question to the user or
by combining other rules in the knowledge-base. The optimal choice of inference
principle depends on the type of problem the expert system is supposed to solve.
In very complex expert systems, neither forward nor backward chaining is fast
enough, and the so-called heuristic search strategies are needed. These strategies
work primarily by searching the knowledge base in an efficient order, focusing on
areas, where a solution to the problem is most likely to be found. Both general and
problem specific heuristic strategies exist.

The questioning mechanism is a standard part of the user interface. Besides
posing questions, the user interface is usually able to explain, why it asks the ques-
tion, i.e. I am trying to establish the value of z because I want to know if either x
ory is true. Another facility is the explanation facility, i.e. I know that neither x
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is true nor 'y is true because 7 is not true. Usually the phrases are formulated more
user friendly.

Programs for maintaining knowledge bases in connection with inference ma-
chine and user interface as an integral part is sold as the so-called expert system
shells. This concept originates from the medical diagnosis system, MYCIN. The
knowledge base in MYCIN was emptied and the program sold as E-MYCIN (or
empty mycin), and was thought to be applicable to any problem domain. Very of-
ten these shells are programmed in programming languages where logic deduction
can easily be represented, such as LISP or PROLOG, but standard programming
languages such as C and Pascal can of course be used.

Rule based expert system can be categorized into several areas (Hayes-Roth
etal., 1996). Referring to Figure 1.1 they comprise the planning, check and analy-
sis phase of the management cycle.

In developing rule based expert systems two “players” are essential, of course
the expert, but in addition the so-called knowledge engineer. The role of the knowl-
edge engineer is to “extract” the knowledge from the expert and to formulate the
knowledge as rules that can serve as input to the knowledge base. Knowledge
engineering has in fact become a research area in its own right.

To illustrate the problem of knowledge engineering, the first rule based expert
systems were based on very simple “expert” rules very much inspired by the diag-
nostic systems, e.g. if indications a and b are observed then problem is probably
c. Later on it was realized that the expert relies on many information sources and
part of being an expert is to know when to draw on which knowledge sources. If
we look at the information necessary to make optimal decisions as mentioned in
Section 9.1 this can be seen as the result of an expert’s problem solving. An expert
system would therefore guide the user through obtaining the necessary informa-
tion. If it is not possible to obtain the necessary information it would use other
information and based on the expert’s experience try to make a sufficiently good
plan.

The current trend is that the rule-based system does not function as stand-alone
systems, but rather as an integral part of other systems, the so-called knowledge
based systems. A typical example could be that the expert system helps in es-
tablishing the user’s utility function by asking questions and then uses this utility
function when calling an optimizing program. The concept is now incorporated
into the wizards and experts known from standard computer program, e.g. spread-
sheets and word processors.

The method will not be discussed further in this book.

9.3 Linear programming with extensions

The general linear programming problem may in matrix notation be written as
follows:
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pr = Min!
subject to 6.1
Az < b
z > 0

where p is a constant row vector with m elements, A is a constant matrix of size
n X m, b is a column vector with n elements, and x is a vector of variables. The
problem is to select a vector = that minimizes the linear objective function px and
simultaneously meets the linear constraints Az < band z > 0.

Eq. (9.1) represents the standard formulation of a linear programming problem.
In applied models it is often convenient to define a maximization problem instead,
and some of the restraints may be of the kind a;x > b; or the kind a;z = b;
(where a; is a row in A) , but any linear programming problem may be rearranged
in accordance with the standard formulation of Eq. (9.1).

If we interpret the linear programming problem in relation to a herd manage-
ment decision problem, then «x is a vector of factor levels and Ax < b is a set of
constraints of legal, economic, physical or personal kind. It should particularly be
noticed, that personal constraints may also include constraints on levels of attribute
functions (for instance leisure time or monetary gain). This direct representation
of constraints is probably the main force of the method. The objective function px
has to represent the aggregate utility function.

If we compare the linear programming problem with the information needs
of a decision problem (cf. Section 9.1) we observe that all random elements are
missing. At least in the standard formulation, the method is deterministic. Also the
dynamic linking to the future state of the production unit is missing. A consequence
of the latter shortcoming is that only effects at the current stage are represented. In
other words, the method is static of nature. Furthermore, we observe, that since the
aggregate utility function has to be linear in the factor levels, x, also the production
function, all attribute functions and the utility function have to be linear. Examples
of linear attribute functions are shown as Eqgs. (3.1), (3.4) and (3.7), and a linear
utility function is shown as Eq. (3.17). This demand for linear functions and linear
restraints is a serious weakness of the method.

Several of the shortcomings mentioned may be redressed or at least adapted
by extensions to the method: The linear objective function may be replaced by a
quadratic one (quadratic programming); the static nature may be modified by in-
troduction of stages and additional constraints ensuring dynamic links (dynamic
linear programming); random terms may be added to the elements of A and b, and
the corresponding restraints may be expressed as probabilities (stochastic program-
ming); and often, non-linear functions may be approximated by pieces of linear
relations over short intervals. In particular, dynamic linear programming, may be
used to link decisions at different levels with different time horizons.



9.4 Dynamic programming and Markov decision processes 173

Herd management applications of linear programming are numerous. The most
frequent application is no doubt for ration formulation, where least-cost rations
meeting the nutritional requirements of the animals in question are met. Most
often such programs ignore the effect of feeding on production.

Also examples of application of linear programming for whole-farm planning
may be found in literature. Refer for instance to Hansen (1992) and Hardie (1996).
Such models are often very large containing thousands of variables and restraints,
but since very efficient standard software is available this is hardly a problem.

Due to the shortcomings of Linear Programming in dealing with important
aspects (like dynamics and uncertainty) of herd management, the method is not
given high priority in this book. Nevertheless, a short intuition based description
is given in Chapter 10, together with practical aspects of modeling by use of linear
programming.

9.4 Dynamic programming and Markov decision processes

Consider a production unit which is observed over a number of stagesn = 1,..., N.
At the beginning of each stage, we observe the state, ¢ € wy, of the unit. Having

observed the state, we have to take an action, d € D,,, concerning the production

unit. Usually, the state space, wy,, and the action space, D,,, are assumed to be finite

sets. Depending on the stage, state and action, a reward is gained. The reward may

very well be a random variable, but the expected value, rzd(n), has to be known.

Also the state to be observed at the next stage is a random variable. We shall de-
note as pglj(n) the conditional probability of observing state j at stage n + 1 given
that state ¢ has been observed and action d taken at stage n. Finally, a strategy,
s, is defined as a map assigning to each combination of stage and state an action
s(n,1) € Dy,. We have now defined the elements of a Markov decision process (or
a dynamic programming problem).

The purpose of dynamic programming is to determine a strategy which (in
some sense) is optimal. Several optimization techniques are available. The most
commonly applied method is called value iteration where a value function repre-
senting the expected total rewards from the present stage until the end of the plan-
ning horizon (i.e. stage V) is maximized. Optimal decisions depending on stage
and state are determined backwards step by step as those maximizing the value
function. This way of determining an optimal policy is based on the Bellman prin-
ciple of optimality which says: An optimal policy has the property that whatever
the initial state and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first decision (Bellman,
1957, p. 83). Value iteration is often just denoted as dynamic programming.

If N is large, an infinite planning horizon is often assumed. A relevant opti-
mization technique for infinite stage problems is policy iteration. This method was
introduced by Howard (1960), who combined the dynamic programming technique
with the mathematically well established notion of a Markov chain. A natural con-
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sequence of the combination was to use the term Markov decision process to de-
scribe the notion. The policy iteration method was a result of the application of the
Markov chain environment and it was an important contribution to the development
of optimization techniques.

The objective function being maximized during optimization depends on the
circumstances. It may represent the total expected rewards, the total expected dis-
counted rewards, the average rewards per stage or the average rewards over some
kind of physical output.

If we compare the dynamic programming problem with the information needs
of a decision problem (cf. Section 9.1) we observe that most aspects are covered.
The current state is simply ¢, and the rewards directly correspond to production
functions; the conditional probabilities p;ij (n) represent the dynamic random links
to future stages; and the objective function represents the farmer’s utility function.
There are, however, some restrictions on the kind of utility function which can be
represented in a dynamic programming model. The restrictions concern the way
in which individual stage attributes are aggregated into the over-all utility function
as described by Eq. (1.5). In order to be able to use dynamic programming, we
implicitly assume that the aggregation may be performed in such a way that we
first aggregate attributes at the same stage into a stage specific utility v,, of the kind

Upn = gn(ul,tna ceey uk,tn)v

where g, is a stage specific utility function of arbitrary kind. In the dynamic
programming context, vy, is identical to the reward 7#(n). The over-all utility (i.e.
aggregation over stages) in turn must be calculated as a simple sum of the stage
specific utilities v,,, as a discounted sum (cf. Eq. (3.2)), as the average value over
stages or as the average value over some kind of physical output or input from
production.

The most difficult kind of information to represent in dynamic programming
models is the information on constraints. There is no general solution to that prob-
lem, but some times it may be solved by using an objective function maximizing
average rewards relative to the most limiting restriction. An example is maximiza-
tion of average net returns per unit of milk produced under a milk quota (Kris-
tensen, 1989). In other cases combination of the method with methods like sim-
ulation (Ben-Ari and Gal, 1986; Kristensen, 1992) or genetic algorithms (Houben
et al., 1995) may circumvent the constraint problem.

A major problem in relation to dynamic programming models is the so-called
curse of dimensionality. Since the state space is represented by discrete levels of
a set of traits (state variables), models tend to become very big. Thus a model
presented by Houben et al. (1994) contained 6.8 million states. Despite the size
of the model, optimization was still possible due to a new notion of a hierarchical
Markov process described by Kristensen (1987, 1991).

Later the concept was further developed by Kristensen and Jgrgensen (2000)
into multi-level hierarchical Markov processes in order to allow for simultaneous
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optimization of decisions on multiple time scales (at the founder level as well as
at the child levels). A general Java software system, MLHMP, for representation
and solution of multi-level hierarchical Markov processes has been developed by
Kristensen (2003a).

Numerous applications of dynamic programming are described in literature. A
relevant textbook concerning application in agriculture has been written by Kennedy
(1986). The book also contains a survey of agricultural applications. In herd man-
agement, the technique has most often been applied for operational decisions like
replacement, insemination and medical treatment of animals.

Despite the numerous successful applications, the very concept of a Markov
decision process has some built-in limitations:

State space representation: Most often the state of the system (e.g. an animal)
being modeled is defined by the values of a number of state variables each
representing a trait of the system. The state space is then defined as the
cartesian product of all value sets of individual state variables. This leads to
very large transition matrices which - even though they are often sparse - are
inefficient from a numerical point of view.

Observability: It is generally assumed that the parameters of a Markov decision
process are known and that the state space is fully observable. In particular
when we are dealing with production assets, it would be more logical to dis-
tinguish between directly observable state variables like for instance number
of items produced and underlying unobservable asset dependent potential for
production capacity. This kind of modeling is referred to as POMDP Par-
tially Observable Markov Decision Processes. Refer for instance to Lovejoy
(1991) for a survey or Kaelbling et al. (1998) for an introduction.

Markov property: The Markov property implies that the state space at any stage
must contain sufficient information for determination of the transition proba-
bilities. In a straight forward formulation of a decision problem this is rarely
the case. The trick used most often in order to make the process Markovian
is to include memory variables in the state space. Even though this solves
the problem from a theoretical point of view it contributes significantly to
the curse of dimensionality of such models.

Even though the multi-level hierarchical Markov decision processes to some
extent compensate for these problems by partitioning the state space according
to temporal considerations and also an attempt to combine hierarchic Markov pro-
cesses with Bayesian updating in special cases has been done by Kristensen (1993),
the state space representation, the lacking observability and the Markov property
remain important limitations for the use of Markov decision processes.

Further details of the technique are given in Chapter 13. A very good general
textbook has been published by Puterman (1994).
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9.5 Probabilistic Expert systems: Bayesian networks

Another part of the research area named Artificial Intelligence are the so called
probabilistic expert systems that rely on the Bayesian network. The following
description is based on Lauritzen (1995).

In some areas where expert systems are appropriate, the task involves perform-
ing a sequence of steps according to specified logical rules. However, other ex-
pert systems work in domains that are characterized by inherent uncertainty. This
uncertainty is either due to imperfect understanding of the domain, incomplete
knowledge of the state of the domain at the time where the task has to be per-
formed, randomness in the mechanisms governing the behavior of the domain or a
combination of these. Within these domains probability and statistics can serve to
represent and manipulate the uncertain aspect of domains having these characteris-
tics. Probabilistic methods were for some time discarded in this context as requir-
ing too complex specification and computation. However, the work of Pearl (1988)
and Lauritzen and Spiegelhalter (1988) demonstrated that these difficulties could
be overcome, based on causal networks or as it is now usually termed Bayesian
networks. There exist other formalisms for handling uncertainty in expert system,
such as the fuzzy sets, but these will not be discussed in the present context.

The rule based systems were mainly constructed through modeling of the be-
havior of the expert and the encoding of this behavior in terms of rules of various
kind. In contrast, probabilistic expert systems are constructed by modeling the
domain rather than the expert. The method is thus in close correspondence with
the approach used in this book, where the domain is modeled using production
functions etc. The probabilistic expert systems specify a graphical model for the
variables. The reasoning is then performed by updating the probabilities of the
domain in the light of the specific knowledge according to the laws of conditional
probability.

The graphical model captures associations between entities in the domain, or
rather lack thereof, in terms of conditional independence that in a systematic fash-
ion are encoded in a graph or network with nodes representing the entities them-
selves and edges representing associations between them. The nodes are repre-
sented as dots or circles. The edges are usually directed corresponding to influ-
ences of a causal nature and represented as arrows, or, sometimes, undirected cor-
responding to symmetric associations (e.g. correlations) and represented as lines.

The use of the graphic specification in the probabilistic expert systems plays
several roles. For example, it gives a visual picture of the domain information;
it gives a concise presentation of domain information in terms of conditional in-
dependence relations, and it enables rapid computation and revision of interesting
probabilities.

The graphic method can also be used for several important tasks in the speci-

fication process. It can be used to learn quantitative and structural aspects, or as it
known within general statistics, estimation and model selection.
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If we compare the probabilistic expert systems method with the information
needs of the decision problem (Section 9.1), it is important to recognize that the
method is inherently a static method, even though attempts have been made to
model dynamic systems as well. For monitoring and analysis purposes it is ideal,
i.e. the method can assign probabilities to observed deviations, whether they are
random or not. It can also make a diagnosis in the analysis, that is, indicate proba-
bilities for different causes of the deviation. This can in turn serve as the necessary
basis for decisions concerning changes in production plan.

The expert systems can be build as recurrent time slices and can in this man-
ner represent dynamic production functions, predicting the future state for given
decisions. The constraints concerning the production function can be modeled, but
constraints may cause the same problems as described under Dynamic Program-
ming and Markov decision processes.

To represent decisions in Bayesian networks the decision can be included as a
random variable in the model, with the different decisions as level of the variables.
When the decision is made, the corresponding level is assigned a probability of 1.
This approach does not make any search for optimal decisions.

If decisions have to be included, Decision Graphs should be used instead. They
can in fact be fitted into the general framework of Bayesian Networks.

We shall not in this book discuss Bayesian networks further. Instead, readers
are referred to an excellent textbook by Jensen (2001) where this important subject
is convincingly introduced in Chapters 1 and 2. Readers interested in the algorith-
mic aspects of the method should consult Cowell et al. (1999).

9.6 Decision graphs

Decision graphs (or influence diagrams as they are also called) were introduced by
Howard and Matheson (1981) as a formalism to model decision problems with un-
certainty for a single decision maker. The influence diagrams gave a more compact
graphical representation of a decision problem than the more traditional decision
tree approach as illustrated in Figure 9.1.

A decision graph is very similar to a Bayesian network consisting of chance
node and directed edges (“arrows”) denoting causal effect. In addition two more
node types are introduced, the decision node shown as a square, and the value node
shown as a diamond (cf. Figure 9.1).

Originally, the decision graph was translated to a decision tree within the com-
puter and the standard “average-out and fold-back™ algorithm was applied on that
tree. In Shachter (1986) a method was suggested for solving the decision problem
represented by the decision graph directly, without the translation to a decision
tree. This method transformed the decision graph by successively removing nodes
in the graph, until at last only one final utility node remained, holding the utility of
the optimal policy. In order to solve many similar problems one therefore had to
start from scratch every time. The transactions performed on the graph consisted of
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Decision Tree Influence Diagram

Figure 9.1: Decision tree and decision graph (influence diagram) representation of
the pregnancy diagnosis and replacement problem.

four simple transactions, the arc reversal (application of Bayes Theorem), node re-
moval by summing out, expectation of a value node with respect to a change node,
and finally removal of a decision node into a value node by maximization. Initially
problems were formulated with only one value node. By introducing the concept of
separability of the utility function or value function, Tatman and Shachter (1990)
showed that the Dynamic Programming Problems could be solved within the deci-
sion graph framework, by introducing the separability of the utility function. The
requirement for separability is the same as the requirement that the overall utility
is calculated as a simple sum of stage specific responses as mentioned in Section
9.4.

Shenoy (1992) proposed another algorithm that gave the solution to the deci-
sion graph without disrupting the structure of the graph. Then Jensen et al. (1994)
showed how a similar approach could be incorporated within the general frame-
work of Bayesian Networks. This approach has been implemented in the Hugin ex-
pert system shell. The similarity between decision graphs and Bayesian networks
means, that several important improvements is to be expected. This comprises, e.g
approximate solutions by techniques such as Monte Carlo methods (Bielza et al.,
1999; Charnes and Shenoy, 1996), easy representation of dynamic models as in
dHugin (Kjerulff, 1995) and object oriented design (Bangsg, 2004).

As decision graphs closely correspond to Dynamic Programming the same
comments concerning the information needs of the decision problems can be made.
In addition, the current version of decision graphs are inherently static, and no algo-
rithm corresponding to policy iteration has been found (even though R.A. Howard’s
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research has been central for both developments). If stages of varying time length
have to be modeled, time has to be included in the model and the discounting fac-
tor has to be incorporated directly in the utility. Furthermore decisions choosing
between qualitatively different child processes, such as in Hierarchic Markov pro-
cesses is currently not possible. It should, however, be noted that it is a very active
research area, and continuous progress is to be expected.

Decision graphs at first glance seem to overcome all three problems listed for
Markov decision processes in Section 9.4:

State space representation: Instead of a state space formed as a cartesian prod-
uct, the state variables are represented one by one in decision graphs.

Observability: In decision graphs, variables may be observable or unobservable.

Markov property: The classical algorithms applied to decision graphs as pre-
sented by for instance Jensen et al. (1994), implicitly assume no forgetting
implying that all previous observations done and decisions made are remem-
bered and taken into account. This “no forgetting” assumption is today as-
sociated with the concept of “Influence diagrams” as a subclass of the more
general concept of “Decision Graphs”.

In practice, however, the performance of influence diagrams has been disap-
pointing. Even though algorithms for optimization are available (refer for instance
to Cowell et al., 1999, Chapter 8), the numerical calculations become prohibitive
for real world decision problems because of the “no forgetting” assumption. A re-
cent extension by Lauritzen and Nilsson (2001) to influence diagrams called LIM-
IDs or Limited Memory Influence Diagrams relaxes the “no forgetting” assumption
thus providing a computationally tractable decision problem without assuming a
Markov process. The algorithm presented is exact in some cases and only approx-
imate in other cases.

Thus, the method has obvious possibilities for application within animal pro-
duction, but so far the only example known to the author is a model for deter-
mination of optimal slaughter policies in slaughter pigs (Hansen, 2006). Within
crop protection a system has been made for decision making concerning mildew
management in winter wheat (Jensen, 1995).

We shall not in this book give details about the algorithms of decision graphs.
Instead, we again direct the readers to good textbooks like Cowell et al. (1999);
Jensen (2001). Chapter 12 deals with some practical aspects of modeling by use of
decision graphs.

9.7 Simulation

As the name implies, a simulation model is simply a model of a system. The
model is used for the study of the real system’s behavior under different condi-
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tions. Within animal production the term usually refers to computer based dynamic
calculation models.

Formally, the simulation model is a computer representation of the production
function, the attribute function, and/or the utility function. The degree of detail
differs between the different models.

The input to the model consists of two elements, a set of parameters, ¢, and
a set of decision rules, ©. The decision rules specify the setting of input factors
as well as other decisions in the system. The term “decision rule” is used rather
than decision strategy, because usually no direct mapping between the rule and
the state of the whole system exists. A decision rule can e.g be to use a dynamic
programming model to specify a decision strategy every (simulated) year. Another
example is to use some simple rule-of-thumb (heuristic) to make culling decisions.
The set of parameters can be split in two, ® = (P, Pse), where P are the initial
values of the parameters at the start of the calculation (State of Nature) and P,
represents parameter values that change during simulations. The elements of P,
are often called state variables, and can be further split into time stages of the model
ie. Pge = (Ps1,Ps2y..., Py, ..., Pyr), where T is the number of stages in the
planning horizon. It is often convenient to refer to the set of output variables (2,
that contains calculated values of input factors, production functions, attributes etc.
The distinction between the elements of ® 44 and {2, is not clear, but usually, €2, is
a subset of ®.,. The elements in (2, will usually be traits that at least in principle
can be observed in the real system. The term model input usually refers to (Pg, ©).

The purpose of the models is to calculate the expected utility, U(©), under a
given decision rule, 0, i.e.,

ve) = [ veomei ©2)
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where U is the utility function, which in general can refer to any function of the
output variables. The functions fe, f(¢,,9,) and fe, are the density functions of
D, (Pse|Pp) and Dy, respectively. Simulation models are numerical methods for
solving this integral.

Two different categories of simulation models have been implemented within
animal production. Stochastic models and deterministic models, where the stochas-
tic nature of the system is ignored, i.e. the underlying assumption is that P(® =
¢.) = 1 for some ¢, e.g. estimated from various experiments. It is important to
realize that such a simplification is only valid, if U(O, ®) is linear in the parame-
ters. Since this is almost never the case, we will more or less ignore deterministic
simulation models in this book. They may have some justification for system com-
prehension in animal physiology and nutrition (examples can be found in Whitte-
more and Fawcett, 1976; Black, 1995; Arnold and Bennet, 1991; Danfer, 1990),
but hardly in herd management.



9.7 Simulation 181

Stochastic models can be further subclassified into Probabilistic Models and
Monte Carlo models. Probabilistic models are models such as Markov Chain mod-
els (see references under Dynamic Programming and in addition e.g. Jalvingh et al.,
1992a,b) and Bayesian Networks. Within the probabilistic models the distribution
of the output variables can be directly found within a single run of the model. Rea-
sonable complex models can be specified within this context, at least if the param-
eters and the traits follow the Gaussian (normal) distribution. Capacity restrictions,
interactions between system elements and the inclusion of decision variables will,
however, make it impossible to specify the distribution in closed form.

Therefore, the Monte Carlo simulation technique is preferred. It relies on the
drawing of random numbers. Every time the model encounters a stochastic vari-
able, a (pseudo)-random variable is drawn from the appropriate distribution and
this value is used in the subsequent calculations. Each completed calculation (sim-
ulation run) with the model represents a random drawing from the simultaneous
distribution of input and output variables. By increasing the number of calculations
the distribution of the output variables can be specified to any degree of precision.
The expected utility is found from:

1
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where ¢; is a random drawing from the multidimensional distribution of the param-
eters, and k is the number of random drawings (simulation runs). In addition the
standard error on the estimated utility can be found by calculating the variance of
U(©, ¢;). Thus, we can obtain a measure of the precision of the estimated utility,
and an indication of how many iterations that are necessary. If, for instance, the
standard error of the expected utility is 10% after 100 iterations, it will take 10,000
iterations to obtain a standard error of 1%.

Examples of Monte Carlo simulation models are (in pigs) Singh (1986); de Roo
(1987), (in dairy cows) the SimHerd model (Sgrensen et al., 1992; Pstergaard et al.,
2000, 2004, 2005) and the Florida Dairy Computer Program (de Vries et al., 2004),
and (in hens) the SimFlock model (McAinsh and Kristensen, 2004; Kristensen and
Pedersen, 2003).

Simulation models can also be divided between physiological models of single
animals, physiological models of whole herds, and models of whole herds with
emphasis on managements strategies. The physiological model of whole herds is
e.g. Tess et al. (1983); Pettigrew et al. (1986); Finlayson et al. (1995), while exam-
ples of current physiological models is found under the deterministic models, and
the whole herd approach under the stochastic models mentioned above. Obviously,
it is within the last category that the likely candidates for decision support systems
should be found. However, models from the first category have been adapted to
serve as decision support systems. The first two approaches are often based on a
description of the system with differential (or difference) equations, while the third
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approach relies more on the theory behind stochastic processes such as queuing
models.

Compared to the other techniques, simulation models are much more flexible,
and there is no constraint on the degree of detail in the model. Especially when the
so-called object oriented programming method is used, it is possible to achieve a
very close correspondence between the elements of the real system and the model
(see e.g. Chang et al., 1994; Skidmore and Beverly, 1995; Jgrgensen and Kiris-
tensen, 1995; McAinsh and Kristensen, 2004). Any model variable can be used as
output variable and it is easy to represent capacity restrictions.

Very often the purpose of simulation models is to improve the understanding
of a system, i.e. to combine research results from different areas to obtain a com-
prehensive description of the system, the so-called holistic approach. This purpose
should be seen as something different from decision support. When simulation
models are used to improve the understanding of the complex system, a fixed and
known set of parameters ¢g are used for the initial state of nature, ®g, and the
expected value of the utility function or any other output variable is calculated as:

K
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i.e. only the inner part of the integrand in (9.2) is solved.

The knowledge of the systems sensitivity to changes in the parameters is part
of, what we call understanding of a system.

In contrast, when simulation models are used to determine “optimal” strategies
we want to find the optimal set of decision rules given the precision in our current
knowledge of the parameters (state of nature). The parameters used in each simu-
lation run should therefore be a sample from the prior distribution of & reflecting
the precision in our current knowledge, and not fixed values.

The search for optimal strategies is included in linear programming, dynamic
programming and decision graphs, (i.e. simplex algorithm, policy and value iter-
ation). No such search facility is included in connection with simulation models.
This is a major drawback of the method.

Within simulation models the search for the optimal set of decision rules is
treated as a general problem of multidimensional optimization. Several numerical
methods exist that can handle this (see e.g. Press et al., 1989). The choice of
method should be made carefully. The flexible form of the simulation models
means that the behavior of the expected utility function is unknown, for example
if there exist discontinuities and local optima. Such phenomenons can make some
of the methods go wrong. Another complication is that the expected utility is only
estimated with a precision depending on the number of simulation runs within each
treatment. The difference between two sets of decision rules may therefore be just
a matter of sampling error, rather than a difference in expected utility. The solution
to this problem is to do more simulation runs. But there is a trade off between
time spent improving the precision in the estimate of one set of decisions rules and
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the time spent searching for a better. Guide lines to handle this problem are not
available.

The search procedures are most easily demonstrated by borrowing terms from
experimental world. A set of decision rule is termed a treatment. Expected val-
ues from a given treatment are found by a number of replicates (V) or simulation
runs. When searching for optimal decision rules, we have to repeatedly specify
new treatments and calculate expected utility for the treatment. If we want to com-
bine a set of treatments simultaneously, we design an experiment with the different
treatments included.

A well-established technique for well-behaved expected utility functions, es-
pecially with continuous variables in the decision rules, is the gradient search tech-
nique. First an experiment is designed to initially explore the expected utility func-
tion, e.g. a response surface design. The result from this experiment is analyzed
and the response surface estimated. If the optimum is outside the current design,
the path of steepest ascent of the response surface is estimated. Then an experiment
is made with treatments on the steepest ascent path, until the optimal treatment on
this path is found. A new response surface design is made centered around this op-
timum point. This procedure is repeated until the optimum is found with sufficient
precision. Using this procedure, an (at least local) optimum will be found.

Other promising techniques are stochastic search techniques, such as simu-
lated annealing and genetic algorithms. These algorithms start with the selecting
of a random initial set of decision rules (treatment) as the current. The expected
utility of this is calculated. Then the following steps are carried out iteratively.
Select a new treatment candidate based on the current treatment by random per-
mutation. Calculate expected utility for the treatment candidate. Decide randomly
according to a specific rule (depending on the technique), whether to use the treat-
ment candidate as current candidate by drawing a random variable. Continue the
iterations.

A third possibility is the group of so-called heuristic search strategies. Exam-
ples can be found in Reeves (1995).

If we compare the simulation method with the information needs of the deci-
sion problem, all the aspects can be covered, and the utility function and capacity
restrictions can easily be handled. The curse of dimensionality is not felt imme-
diately. The computation time of a single run of the model grows more or less
linearly with the complexity of the model. The problem is the search for opti-
mal solutions. The techniques mentioned are not as efficient as either the simplex,
value iteration or policy iteration methods. With the same complexity in the deci-
sion rules as in e.g. dynamic programming the curse of dimensionality will be felt,
e.g. if the decision to cull an animal should include the states of all other animals in
the herd. If the rules are specified more heuristically, such as cull the worst animal,
the problems become tractable, but no overall optimal solution is guarantied. Other
decision rules might exist with higher utility.

Probably because of this problem, published results from simulation model
research usually have only very few options in the decision rule, and the decision
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rules are often of a very general nature. The use of simulation models for decision
support is usually suggested to be of the what-if nature, i.e. the user of the model
specifies some decision rules and the model calculates the expected output from
these decision rules. This approach has advantages because there is no need to
attempt to formulate the farmer’s utility function. The user of the model can simply
look at the list of output variables for different set of decision-rules and decide
which set to prefer. Anyhow, it seems that some kind of optimality search within
the simulation models would be the best.

The future developments within simulation modeling, will probably be in the
area of estimating model parameters, perhaps by directly using the model calcu-
lations. More efficient strategies for sampling than the purely random approach,
and improved search strategies are of interest, too. Finally, developments within
the area of multi criteria optimization, to obtain a better reflection of the farmers
utility in the object function should not be overlooked.



Chapter 12

Decision graphs: Potential use
and current limitations

12.1 Introduction

The purpose of this chapter is to illustrate the potential use of the decision graph
technique within herd management. Decision graphs were (under the name of /n-
fluence Diagrams) introduced by Howard and Matheson (1981) as a formalism to
model decision problems with uncertainty for a single decision maker. The influ-
ence diagrams gave a more compact graphical representation of a decision problem
than the more traditional decision tree approach. In Shachter (1986) a method was
suggested for solving the decision problem represented by the influence diagram
directly, without the translation to a decision tree. This method transformed the in-
fluence diagram by successively removing nodes in the graph, until at last only one
final utility node, holding the utility of the optimal policy. In order to solve many
similar problems one therefore had to start from scratch every time. Shenoy (1992)
proposed another algorithm that gave the solution to the influence diagram without
disrupting the structure of the diagram. Then Jensen et al. (1994) showed how a
similar approach could be incorporated within the general framework of Bayesian
Networks. This approach has been implemented in the Hugin expert system shell.
We refer to Jensen et al. (1994) for a presentation of the method. In addition, we
refer to the short introduction given in Section 9.6.

As concerns software for decision graphs, reference is made to the Hugin'
system implementing classical influence diagrams under the “no forgetting” as-
sumption by use of the strong junction tree approach (Jensen et al., 1994) and the
Esthauge LIMID Software System? implementing Limited Memory Influence Di-
agrams as described by Lauritzen and Nilsson (2001).

"http://www.hugin.com
“http://www.esthauge.dk
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12.2 From decision tree to influence diagram

The decision tree is a method for decision analysis. An excellent general descrip-
tion can be found in Hillier and Lieberman (1996). The concept is also illustrated
in Example 4.5 of Chapter 4. In order to further illustrate the method we will
elaborate on the pregnancy diagnoses decision tree in Figure 9.1 of Chapter 9.

The sequential decisions start from the left of the diagram. A decision node
(a square) represents the decision to Make Pregnancy Diagnosis (MPD). From the
decision node two branches originate, “Yes” and “No”. If we follow the “yes
branch”, we encounter a chance node (a circle), the outcome of the pregnancy
diagnosis, i.e. either “yes” (positive diagnosis) or “no” (negative). After the chance
node, another decision node is encountered, ‘“Replace” (RP), with “yes” and “no*”
as actions. If we decide to keep the animal, the final chance node is encountered,
“Farrowing” (FA) with possible outcomes, “yes” or “no”. If we initially decide
not to make pregnancy diagnosis, we have to wait and see what the outcome is at
farrowing time.

At each branching in the nodes, we can assign a utility and a probability. If
the pregnancy diagnosis is made, the cost is the additional work. If the animal is
replaced, the income from the slaughter value of the animal plus the expected value
of a new animal is received. If we decide to let the animals farrow, we add the feed-
ing cost until farrowing, and the future value of the present animal. If it farrows,
we obtain in addition the income from the litter produced. The probability of each
branching in the chance nodes can be found similarly. If we make a pregnancy
diagnosis the probability of the two outcomes depends on the Pregnancy State (PS)
of the animal and the precision of the measurement method, but by applying Bayes
formula, the probabilities can be found. (Note that the state of nature, PS, is not
represented in the diagram). Similarly the probability of farrowing given PS and
PD can be found and assigned to each branch leading from FA. To solve the deci-
sion tree diagram, one starts from the outmost branches (the leaves). In a chance
node we calculate the expected utility. I.e. the expected utility in the FA node is
the probability of farrowing times the income from a litter plus the probability of
not farrowing times the income from not producing a litter (0). At a decision node
we use maximizing instead of taking the expectation. I.e. we make the decision
that have the highest expected utility. Gradually we move from the leaves to the
stem/root of the decision tree.

As a real tree, the decision tree very soon becomes confusing to look at, i.e.
the idea behind the graphic representation is soon lost. Furthermore, we had to
do some calculations outside the tree, because some of the chance nodes were
not represented (i.e. the pregnancy state). In addition some chance nodes are
represented at several places in the diagram (e.g. the FA node)

The Influence diagram solved these problems to a large degree, when they were
introduced by Howard and Matheson (1981). The use of the circle as a symbol for
a chance node, and the square for a decision node was maintained, but in addi-
tion the diamond was added to represent the utility in the diagram. The branches
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that represented the outcomes of decisions/chances, were removed and replaced
by arrows that showed what influenced the decisions and chance nodes. The util-
ity representation of the pregnancy diagnosis problem is also shown in Figure 9.1.
The chance node PS (Pregnancy State) is added. The MPD node influences the
node UD (Utility Diagnosis), and the outcome of the pregnancy diagnosis, and the
next decision RP. The outcome of the pregnancy diagnosis is in addition influenced
by the PS node. Note that PS influences FA directly disregarding the outcome of
PD. The utility from replacement (UR) and from farrowing (UF) finishes the pic-
ture. (Strictly speaking, in the original approach only one mutual utility node was
present).

Originally the influence diagrams were automatically translated to decision
trees and solved using the same algorithm as mentioned above. Shachter (1986)
showed how the influence diagram could be solved directly by removing nodes sub-
sequently, based on 4 different transactions, the arc reversal (application of Bayes
Theorem), node removal by summing out, expectation of a value node with re-
spect to a chance node, and finally removal of a decision node into a value node by
maximization. The first attempts were based on discrete valued state variables, but
Shachter and Kenley (1989) implemented influence diagrams for Gaussian (nor-
mal) distributed variables.

12.3 From Bayesian network to influence diagram

If we look at the graphic representation of the decision graphs and compare with
the Bayesian network, we find that they have the same nodes, i.e. the chance
nodes, represented as circles. The two additional elements in decision graphs, the
decision variables (squares) and utility functions (diamonds), can in fact also be
handled within the framework of Bayesian networks by putting some restrictions
on the solution method. This was first shown in Jensen et al. (1994). In fact, if
the subsequent decisions are not sequential (i.e. the result of a previous decision
does not influence other decisions) they can be directly represented in the Bayesian
network by using the calculation trick, shown in Jensen (1996, Chapter 6). In
realistic decision problems this is seldom the case.

The exact procedure for solving influence diagrams as it has been implemented
in HUGIN, can be found in Jensen et al. (1994). Here we will summarize the
method based on the diagram in Figure 9.1. An important difference between
Bayesian networks and influence diagrams is the dynamic aspect, i.e. the se-
quential decisions impose an ordering on the elements. First of all, the decisions
are ordered according to the sequence in which they are performed, ie. Up =
{MPD, RP} in this case. The ordering is secured by putting directed edges be-
tween the decision nodes on the graph. Second, the chance nodes are put into
sequential groups as well, i.e Ur = {Ip, I1, I2}, where I is the set of observations
before the first decision (in this case it is empty), I; is the set of observations be-
tween the first and the second decision, i.e. I; = {PD}, and finally the nodes that
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are observed after the second decision or never observed, i.e. I = {PS, FA}. We
thus obtain a partial ordering,

0 < {MPD} < {PD} < {RP} < {PS, FA}.

In Bayesian networks, the approach, as described in Jensen (1996, Section 4.5),
would be to make a junction tree from the graph, by moralizing and triangulating
the graph. In this case, however, a so-called strong junction tree is made. This
means that the ordering, we have made, should be preserved in the junction tree,
implying that the variables at the right should be eliminated before the variables on
the left.

This ordering, which is a consequence of the “no forgetting” assumption dis-
cussed in Section 9.6, means that the computational complexity of influence di-
agrams with decision nodes in general is much larger than in Bayesian networks
without.

As described in Jensen et al. (1994) we can then use the junction tree for prop-
agation of evidence by simply interchanging maximization for calculation of ex-
pectation.

One note of caution is that the ordering should be preserved in the subsequent
calculations made by in the network. In standard Hugin, evidence can be entered
anywhere in the tree, and the evidence is distributed properly. This is not possible
with influence diagrams. For example, it does not make sense to study the effect
of a known pregnancy state, because evidence of pregnancy state is defined only
to be available after all decisions have been made. Similarly the effect of known
outcome of pregnancy diagnosis can only be studied for given level of the decision
MPD. Unfortunately, the program does not have a facility that checks that evidence
is input in the correct sequence. However, if the decisions are assigned fixed values,
the evidence can be entered.

The rather new concept of Limited Memory Influence Diagrams described by
Lauritzen and Nilsson (2001) relaxes the “no forgetting” assumption as mentioned
in Section 9.6. The solution algorithm for this class of models is called Single
Policy Updating, and all calculations are done in an ordinary junction tree just
like those used with Bayesian networks (i.e. a strong junction tree is not needed).
From a computational point of view, LIMIDs are therefore very appealing, but on
the cost of exactness. In many cases, Single Policy Updating only leads to near-
optimal solutions, even though they in most cases are very close to the optimum.

12.4 From Dynamic Programming to influence diagrams

The central paper in this respect is Tatman and Shachter (1990). Until the pub-
lication of their paper, influence diagrams were constructed with only one utility
node. They showed that if the utility function was separable, i.e. either additive or
multiplicative, the influence diagram technique corresponded to the Dynamic Pro-
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Figure 12.1: Influence Diagram representing part of the replacement problem for
sows. LS_i is litter size in parity i, Dx represents decisions and Ux
utility.

gramming method, i.e. Dynamic Programming is a special case of the influence
diagram method.

Because of the more flexible approach towards representing the causal rela-
tions, the use of influence diagrams could often result in computational savings, by
reducing the complexity of the problems.

To illustrate the potential of their techniques, Tatman and Shachter (1990)
showed some examples. Their example (B) has close correspondence to the tech-
niques used in solving the replacement problem in animal production, as exem-
plified by Huirne et al. (1991). Therefore, their example (B) is adapted to the
replacement problem. The core in the replacement model by Huirne et al. (1991)
is a model for the relation between litter size in subsequent parities. This can be il-
lustrated as in Figure 12.1. (Note that the decision and utility part is not adequately
represented in the figure).

The litter size is observed at subsequent parities and the decision based on
the observation. The litter size is influenced by the litter size in the two previous
parities as indicated by the arrows. Each litter size node has some 20 different
levels (0,...,19).

To solve this in standard dynamic programming, Huirne et al. (1991) used state
augmentation, i.e. they made a state variable consisting of (LS_i, LS_i+ 1), as
illustrated in the next figure, i.e. the state variable had 202 = 400 states. This
corresponds to the influence diagram in Figure 12.2.

The resulting transition matrix consisted of 400 x 400 = 160, 000 elements. If
the influence diagram shown if Figure 12.1 was used directly, the problem would
only consist of matrices of 20 x 400 = 8000 elements. If information from further
previous litters were included, the difference would be even more pronounced. It
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Figure 12.2: Representation of the state augmentation, L'S_ij is the combined state
variable of litter size in parity i and j.

is worth noting that this reduction in dimensionality is unrelated to the reductions
due to hierarchic Markov processes (cf. Section 13.3.2). Similar savings in state
space is expected in representing other independent components of the state space,
e.g. state for pregnancy ability (number of re-matings).

However, in the current framework of decision graphs, only problems with
finite planning horizon can be solved, as every time step has to be represented in
the diagram. Furthermore, the use of semi-Markov decision processes rather than
Markov decision processes, with the resulting flexibility in using different time
scales has not been implemented either. Finally, the advantages of the hierarchic
Markov process, where in fact a decision can select a process with a different causal
structure is not yet possible.

12.5 Examples

The following is a presentation of examples of the possibility for using influence
diagrams. The examples have not been constructed in detail but the overall struc-
ture of the decision problem should be clear, and quantification of the elements in
the example should be possible. The intention is to stimulate ideas for application
of the technique within animal production.

12.5.1 The two-sow problem

We shall once again return to the “two-sow problem” introduced in Example 6.1
of Chapter 6. As the reader will probably remember, a pig producer has bought
two sows with the same expected farrowing date. One of the sows has to be culled
because there is only room for one sow in the farrowing department. The litter size
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Figure 12.3: Influence diagram representation of the two sow problem.

of a sow is correlated with the litter size in her previous litter. Information about
the litter size in the previous litter can be bought from the farmer, who sold the two
sows. How much should he be willing to pay for the information, and which sow
should he keep?

The example can be formulated as an influence diagram as shown in Figure
12.3. The litter size LS¢ of sow ¢ depends on the previous litter size PLS:. We can
decide to observe i.e. buy the information concerning the previous litter size, and
obtain Observed Litter Size (OLS?). Based on the observed value we can decide
which of the sows we should keep, and the resulting litter size is kept in the node
LS.

12.5.2 The registration problem for the whole cycle

In fact the registration problem does not only concern the previous litter size, but
also the use of heat-detection, pregnancy diagnosis etc. We can easily add nodes
for Heat detection, Pregnancy diagnosis and the corresponding decision nodes and
utility nodes to the diagram as shown in Figure 12.4 for the one sow case.

The decision nodes are UHD (use heat detection), UPD (use pregnancy diag-
nosis), and ULS (use litter size information). To each decision a utility node has
been assigned. An additional chance node has been assigned, PS, representing
pregnancy state. The network in 12.4 can be seen as a combination of Figure 9.1
and 12.3.

In Figure 12.5 the decision example is specified for the two sow problem. In
addition nodes for herd level of pregnancy rate (HPR), heat detection rate (HDR)
and efficiency of pregnancy diagnosis (Herdetect) has been added. These nodes
will represent the uncertainty in the parameters used in the calculation. In addition
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Figure 12.4: Influence diagram representing the decisions in a whole gestation pe-
riod for a single sow.

the nodes will make the system “learn” from the observations made. A trick is used
to ease the specification of the conditional probabilities. The nodes HD:, PDi and
PLS: represent the outcome of the observations. Additional nodes XXOs represent
the information that decisions are based upon, e.g. if a pregnancy diagnosis is
performed the states of PDO will be identical to the state of PD. If observations are
not made, the state “Not observed” of PDO will have probability 1, i.e. the variable
contains no information about the true state.

The network in Figure 12.5 is an example of a network that should be used
cautiously when entering evidence. The herd pregnancy rate is one of the nodes,
where it would be tempting to ask: What if the pregnancy rate was 0.75, what
would the optimal decision be. This is not allowed, because herd pregnancy rate is
defined as an unobservable node, i.e. it does not influence any decision.

Note also that the complexity of Figure 12.5. Even with as few as two animals
in the network, the decision graph is not readily understood. Of course the problem
can be generalized to three sows, but now the diagram becomes almost impossible
to understand. A method exists for easy representation of replicated processes,
the so-called frames where a rectangular box around part of the network signify
that this part of the network is to be replicated. This approach is eg. used in the
specification in BUGS? (Gilks et al., 1993). This to some extent solves the problem
of too complicated networks, and is especially suited for automatic learning within
the network (Buntine, 1994). Such a representation for the network is shown in
12.6. Unfortunately this technique cannot yet be used within Hugin.

*The BUGS programme and manual can be found by visiting the web-adress with URL:
http://www.mrc-bsu.cam.ac.uk/bugs/
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Figure 12.5: Influence diagram representing the decisions within gestation for two
SOWS.
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Figure 12.6: Frame representation of the general N-sow problem. Nodes within
the frame is replicated automatically. (not yet possible within Hugin).
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Figure 12.7: Representing model for litter size with additive effect of sow, A.

Another aspect is the computational complexity. Already with a few sows the
problem becomes difficult to handle on a standard PC. As the complexity increases
exponentially with the number of animals, clearly any computer will be overbur-
dened if realistic problems are to be solved. Therefore, approximate methods need
to be implemented within the diagram. In a similar framework, considering opti-
mal number of sows mated, Greve (1995) implemented a heuristic algorithm and
was able to solve problems of realistic size, i.e. herd sizes in excess of 500 sows.

12.5.3 The repeated measurement problem

The dynamic programming model by Huirne et al. (1991) assumed only effect of
the two previous litters as described in Section 12.4. A more natural approach
would be to assume an additive effect specific for each sow, i.e. a network like
Figure 12.7.

The network corresponds to a statistical model represented as:

LSZ'j = U; + Aj + €ij

with y; as the mean of parity i, A; ~ N(0,0%) as the effect of sow j and &;; ~
N (0, 02) as an independent and random residual.

Using ordinary Bayesian networks such a system can be handled very effec-
tively, but not when influence diagrams are used. This is because of the strong
junction tree mentioned earlier. The junction tree without decisions consists of
cliques with {A, LSy}, and is thus of a moderate size. However as A is an un-
observable effect, it has to be included in the last set in the elimination ordering,
when the influence diagram is compiled. That is, the triangulation should be made
so that A can be eliminated before any of the other nodes. This can only be attained
if links are added between litter size in every parity, and then we are back where we
started. The problem shown in Figure 12.7 has a clique in the strong junction tree
of size O(N), where N is the number of state levels in each litter size node. The
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Figure 12.8: Efficient representation of the additive litter size model. A replaced
by the observable estimate A,. Decions are based on A,,.

same problem arises if any other of the current algorithms for solution in influence
diagrams is used.

Fortunately, this problem can be circumvented. The trick is to use the underly-
ing model to determine observable, /L-j values, i.e. estimate of the sow effect based
on results from her previous litters, so that LS;1; = pit1 + B(Aij — 1) + €.
In the case of the model specified, this can easily be found from the multivariate
normal distribution. Then we obtain a network like Figure 12.8 instead. Note that
the LS nodes are influenced by the estimate. From a causal point of view this of
course nonsense, but it provides the correct answer and reduces the complexity
drastically.

In 12.8 we have explicitly specified the learning or estimation process based on
the observations, and based the decision on the learning. As described in Jensen
(1996), Bayesian networks are an efficient method for a decision maker to learn
posterior distributions from observed data. Therefore it seems a bit surprising that
at the current state of development, when we specify the decision makers subse-
quent decisions within the network, we have to presume that he does not use this
efficient learning method, but only bases his decisions on observed values. The
alternative is to specify the learning algorithm directly, as in 12.8.

The figure corresponds to a decision maker that uses a Bayesian network like
12.7, as a DSS-tool and base his decisions on the mode of the probability distribu-
tion of A after evidence from previous litters has been added to the network.

Further illustration of the possibility for using this updating technique in con-
nection with decision support can be found in Kristensen (1993) and Jgrgensen
(1992). For examples of applications, reference is made to Kristensen and Sgllested
(2004a,b); Lien et al. (2003).

12.5.4 Optimal timing of matings

After weaning most sows show oestrus/heat within 4 to 6 days. Based on the ob-
servation, the manager decides to mate the sow. In order to maximize the resulting
conception rate and litter size the general advice is to repeat matings with 12 hours
interval up to a maximum of three times, if the sow continues to show oestrus. The
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Figure 12.9: Influence diagram representing the problem of optimal timing of mat-
ings.

reason for this is that fresh semen (< 24h) should be available around the newly
released ovum to increase fertilization success.

Ovulation can, in general, not be observed (see Soede, 1993, for methods for
experimental methods for observing ovulation) and the pig producer has to rely on
the observable signs of heat. Time of ovulation and start of heat are both depending
on the hormonal development that can be summarized as follicular development
(it is a complex interaction between the hormones LH, FSH and Oestrogen). In
other words they are conditionally independent given follicle development. The
end of oestrus is determined by follicular development and possible a feed back
mechanism from ovulation. An influence diagram with the relevant mechanism is
shown in Figure 12.9.

Start of heat (Heatstart) and end of heat (Heatend) is checked at regular inter-
vals, e.g. three times a day. The strength of the oestrous signs develops almost
following a gaussian curve. Experienced observers will detect weaker oestrous
signs than inexperienced, that is, the heat will be observed (O_heatstart) earlier
on average. Based on the observed oestrous sign, the pig producer shall decide
the timing and frequency of matings (Matel, Mate2 and Mate3). Depending on
the timing of matings and the unobserved ovulation time (ovulation) the litter size
(LS) will vary. In figure 12.9 the utility nodes are omitted from the mating deci-
sions. Further refinements of the diagram would be to include decisions concerning
oestrus detection schedule and connected costs.

12.5.5 The feed analysis problem

This example is modified from Pedersen (1996). In dairy production a major part
of the feed mix consists of locally produced roughage, such as beets, silage and
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Figure 12.10: Influence diagram representing the ration formulation problem in a
dairy herd under uncertainty.

straw. Knowledge of the energy contents of the feed is used in e.g. feed budgeting
and feed planning. The energy content of roughage can be estimated using several
methods. The simplest is a table look-up for standard figures for energy content in
different categories of roughage. Another simple approach is to estimate dry matter
content and digestibility subjectively, based on experience concerning the look and
feel of the roughage. A more precise evaluation requires a laboratory assessment
of the value. The digestibility can be measured using in vivo techniques that are
the most precise. Alternatively, different in vitro techniques that simulate the in
vivo techniques can be used to a much reduced price. Other aspects of the feed
evaluation can be measured using different techniques, such as NIR.

The dairy farmer thus has to decide, how he should analyze the feed. Before
this question can be answered, we have to consider the decisions that the feed
analysis influences. In Figure 12.10 this is illustrated.

The roughage has a certain true and unobservable energy content (Energy). The
farmer can decide to observe the energy level (O_Energy) using different methods
(Method). These methods differ in price. Together with the observable energy level
in the roughage and the energy level in the supplement feed (Suplement) the farmer
decides the mixing ratio between these two feed stuffs. The resulting energy in the
feed (E_In_feed) is found based on the mixing ratio and the true energy levels in the
two feed stuffs. The energy level in the feed will in turn influence the feed intake
and the feed costs (UF). In addition the milk production level will be influenced
(UM). As the relative price of the feed analysis increases with decreasing herd size,
because the information and the feed mixture are used on fewer animals, the utility
should be corrected to take this into account. The two nodes Relfeed and Relmilk
serve this function.
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12.6 Outlook

When we judge the possible uses of the decision graphs, we should consider, that
it is a very recent technique, and thus still have some shortcomings.

When we look upon the technique as a generalization of the Markov Chain
process for Dynamic Programming, the more static approach used in influence
diagrams is clearly a constraint. Easy specification of a dynamic system, such as
used in dHugin (Kjerulff, 1995) would clearly be a step forward and should make
it possible to utilize techniques comparable to policy iteration. To the authors’
knowledge, this has not been developed yet. The flexible time scales, based on
discounting the utilities, would represent an even further improvement.

The frame approach used in BUGS, see footnote on page 222, would ease the
specification of multi-component systems. It may also be used to represent deci-
sion that chooses between qualitatively different subsystems, similar to Hierarchic
Markov processes (HMP). The subsystem could be represented as different frames,
and the decisions a matter of selecting the frame.

Such developments would make the influence diagram method able to solve
similar problems as is currently solved by HMP. In addition, savings in complexity
similar to those described in section 12.4 would be obtained.

The spinoff from the statistical research in Bayesian networks is expected to
result in numerical methods for handling very large systems, as illustrated by the
early attempts by Bielza et al. (1999) and Charnes and Shenoy (1996) to use Monte
Carlo techniques to optimize the decision strategies. The savings in complexity by
basing decisions on the learning process in Bayesian networks illustrated in section
12.5.3 is another obvious improvement.



Chapter 13

Dynamic programming and
Markov decision processes

13.1 Introduction

13.1.1 Historical development

In the late fifties Bellman (1957) published a book entitled Dynamic Programming.
In the book he presented the theory of a new numerical method for the solution of
sequential decision problems. The basic elements of the method are the Bellman
principle of optimality and functional equations. The idea may be illustrated as
follows.

Consider a system being observed over a finite or infinite time horizon split up
into periods or stages. At each stage, the state of the system is observed, and a
decision (or an action) concerning the system has to be made. The decision influ-
ences (deterministically or stochastically) the state to be observed at the next stage,
and depending on the state and the decision made, an immediate reward is gained.
The expected total rewards from the present stage until the end of the planning
horizon is expressed by a value function. The relation between the value function
at the present stage and the one at the following stage is expressed by the func-
tional equation. Optimal decisions depending on stage and state are determined
backwards step by step as those maximizing the right hand side of the functional
equation. This way of determining an optimal policy is based on the Bellman prin-
ciple of optimality which says: An optimal policy has the property that whatever
the initial state and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first decision (Bellman,
1957, p. 83).

During the following years, Bellman published several books on the subject
(Bellman, 1961; Bellman and Dreyfus, 1962; Bellman and Kalaba, 1965). The
books were very enthusiastic, and the method was expected to be the solution to
a very wide range of decision problems of the real world. The expectations were
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so great, and they were adduced with such a conviction, that Johnston (1965) iron-
ically compared dynamic programming to a new religion. Others regarded the
method as a rather trivial computational device.

Similar stories might be told regarding other new numerical methods, as for
instance linear programming. However, after some years, the applicational scopes
of the methods are encircled. Most often the conclusion is that the method is neither
an all-embracing technique nor a triviality. Between these extremities a rather
narrow range of problems remains where it is a powerful tool. Other problems are,
in some cases, not suitable to be solved by the method. In other cases alternative
methods are better.

This also turned out to be the case in dynamic programming. One of the basic
elements of dynamic programming is the sequential approach, which means that it
fits sequential decision problems best. Obvious examples of sequential decisions
in animal production include replacement of animals (it is relevant to consider at
regular time intervals whether the present asset should be replaced or it should be
kept for an additional period), insemination and medical treatment. Dynamic pro-
gramming is a relevant tool, but if the traits of the animal are well defined and their
precise behavior over time is known in advance, there are other methods that might
be applied to determine the optimal decisions analytically. On the other hand, if the
traits of the animal are affected by random variation over time and among animals,
the decisions will depend on the present observations of the traits. In that case
dynamic programming is an obvious technique to be used in the determination of
optimal decisions and policies.

Having identified dynamic programming as a relevant method to be used with
sequential decision problems in animal production, we shall continue on the his-
torical development. Howard (1960) published a book on Dynamic Programming
and Markov Processes. As will appear from the title, the idea of the book was to
combine the dynamic programming technique with the mathematically well estab-
lished notion of a Markov chain. A natural consequence of the combination was to
use the term Markov decision process to describe the notion. Howard (1960) also
contributed to the solution of infinite stage problems, where the policy iteration
method was created as an alternative to the stepwise backward contraction method,
which Howard called value iteration. The policy iteration was a result of the ap-
plication of the Markov chain environment and it was an important contribution to
the development of optimization techniques.

The policy iteration technique was developed for two criteria of optimality,
namely maximization of total expected discounted rewards and maximization of
expected average rewards per stage. Later on, Jewell (1963) presented a policy iter-
ation technique for the maximization of average rewards over time for semi-Markov
decision processes, which are Markov decision processes of which the stage length
is a random variable. Howard (1971) presented a value iteration method for semi-
Markov decision processes.

For the sake of completeness it should also be mentioned that linear program-
ming was early identified as an optimization technique to be applied to Markov
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decision processes as described by, for instance, Hadley (1964), but no animal
production models known to the authors have applied that technique. This is in ac-
cordance with a conclusion of White and White (1989) that policy iteration (except
in special cases) is more efficient than linear programming.

Since the publication of the first mentioned book by Howard (1960) an in-
tensive research in Markov decision programming has been carried out. Many
results have been achieved concerning the relations between the various optimiza-
tion techniques and criteria of optimality. Reviews of these developments are given
by van der Wal and Wessels (1985) as well as White and White (1989).

13.1.2 Applications in animal production

The dominant area of application in animal production has been for solving the
animal replacement problem either alone or in connection with insemination and
medical treatment. It is however expected that recent methodological develop-
ments will broaden the applicational scope.

Already three years after the book by Howard (1960), an application to the
dairy cow replacement problem was published by Jenkins and Halter (1963). Their
model only included the trait “lactation number” (at 12 levels), and the permanent
value of the study was only to illustrate that Markov decision programming is a
possible tool to be applied to the problem. A few years later, however, Giaever
(1966) published a study which represents a turning-point in the application of the
method to the animal (dairy cow) replacement problem. He considered all three
optimization techniques (value iteration, policy iteration and linear programming),
described how to ensure that all mathematical conditions were satisfied, and pre-
sented an eminent model to describe the production and feed intake of a dairy cow.
The work by Giaever (1966) has not got the credit in literature that it deserves
(maybe because it is only available on microfilm). In a review by van Arendonk
(1984) it is not even mentioned.

During the following 20 years, several dairy cow replacement models using
Markov decision programming were published, but from a methodological point
of view none of them have contributed anything new compared to Giaever (1966).
Several studies, however, have contributed in other ways. Smith (1971) showed
that the rather small model of Giaever (1966) with 106 states did not represent
the upper limit. His state space included more than 15 000 states. Kristensen
and @stergaard (1982) as well as van Arendonk (1985, 1986) and van Arendonk
and Dijkhuizen (1985) studied the influence of prices and other conditions on the
optimal replacement policy. Other studies (Killen and Kearney, 1978; Reenberg,
1979) hardly reached the level of Jenkins and Halter (1963).

Even though the sow replacement problem is almost identical to that of dairy
cows, very few early studies on sows have been published. The only exceptions
known to the authors are Huirne et al. (1988, 1991, 1993) and Jgrgensen (1992).

A study by Ben-Ari et al. (1983) deserves special attention. As regards method-
ology it is not remarkable, but in that study the main difficulties concerning appli-



232 13.2 Variability and cyclic production: Markov decision programming

cation to animal production models were identified and clearly formulated. Three
features were mentioned:

Uniformity: The traits of an animal are difficult to define and measure. Further-
more the random variation of each trait is relatively large.

Reproductive cycle: The production of an animal is cyclic. It has to be decided
in which cycle to replace as well as when to replace inside a cycle.

Availability: Only a limited supply of replacements (in that case heifers) is avail-
able.

The first feature in fact covers two different aspects, namely uniformity because
the traits are difficult to define and measure, and variability because the traits vary
at random among animals and over time. The third feature is an example of a
herd restraint, i.e. a restriction that applies to the herd as a whole and not to the
individual animal. Other examples of herd restraints are a production quota or a
limited housing capacity. We shall therefore consider the more general problem of
herd restraints.

We may conclude that until the mid-eighties, the methodological level concern-
ing the application of Markov decision programming to animal production models
was represented by Giaever (1966). The main difficulties that the method should
overcome had been identified by Ben-Ari et al. (1983). If we compare the approach
of Giaever (1966) to the difficulties that it ought to solve, we may conclude that
the problems related to variability are directly solved, and as it has been shown by
Kristensen and @stergaard (1982) as well as van Arendonk (1985); van Arendonk
and Dijkhuizen (1985); van Arendonk (1986), the problems concerning the cyclic
production may readily be solved without any methodological considerations. The
only problem concerning variability and cyclic production is that in order to cover
the variability, the state variables (traits) have to be represented by many levels, and
to deal with the cyclic production a state variable representing the stage of the cycle
has to be included. Both aspects contributes significantly to an explosive growth of
the state space. We therefore face a dimensionality problem. Even though all nec-
essary conditions of a Markov decision process are met, the solution in practice is
prohibitive even on modern computers. The problems concerning uniformity and
herd restraints are not solved by the approach of Giaever (1966).

13.2 Variability and cyclic production: Markov decision
programming

As mentioned in the introduction, Markov decision programming is directly able
to take the variability in traits and the cyclic production into account without any
adaptations. In order to have a frame of reference, we shall briefly present the the-
ory of traditional Markov decision programming originally described by Howard
(1960).
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Stage 1 Stage 2 Stage 3 Stage 4

Figure 13.1: Stages of a Markov decision process.

13.2.1 Notation and terminology

Consider a discrete time Markov decision process with a finite state space U =
{1,2,...,u} and a finite action set D. A policy, s is a map assigning to each state
i € U an action s(i) € D. Let pglj be the transition probability from state ¢ to
state j if the action d € D is taken. The reward to be gained when the state 7 is
observed, and the action d is taken, is denoted as r¢. The time interval between
two transitions is called a stage.

We have now defined the elements of a traditional Markov decision process,
but in some models we further assume that if state 7 is observed, and action d is
taken, a physical quantity of mf is involved (e.g. Kristensen, 1989, 1991). In this
study we shall refer to m¢ as the physical output. 1f (i) = d, the symbols 7¢, m¢
and p;ij are also written as 17, m; and pj;, respectively.

An optimal policy is defined as a policy that maximizes (or minimizes) some
predefined objective function. The optimization technique (i.e. the method to iden-
tify an optimal policy) depends on the form of the objective function or - in other
words - on the criterion of optimality. The over-all objective to maximize net rev-
enue of the entire herd may (depending on the circumstances) result in different
criteria of optimality formulated as alternative objective functions. The choice of
criterion depends on whether the planning horizon is finite or infinite.

13.2.2 A simple dairy cow replacement model

For any dairy cow it is relevant to consider at regular time intervals whether it
should be kept for an additional period or it should be replaced by a heifer. If the
line of Figure 13.1 represents time, the markers indicate where we consider to re-
place. The time interval between two markers is called a stage and in this example
we assume the stage length to be one year which for convenience is assumed al-
ways to be equal to a lactation period. At the beginning of each stage, we observe
the state of the animal in production. The state space must be defined in such way
that all relevant information is given by the state. In this very simple example we
assume, that the only relevant information is whether the cow is low, average or
high yielding. Thus we have got one state variable (milk yield) and three states.
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Table 13.1: Rewards (gross margins), rld, depending on state, ¢, and action, d.
State d=1(Keep) d =2 (Replace)
¢ = 1 (low yielding) 10,000 DKK 9,000 DKK
i = 2 (average yielding) 12,000 DKK 11,000 DKK
¢ = 3 (high yielding) 14,000 DKK 13,000 DKK

Table 13.2: Physical outputs (expected milk yields), mf, depending on state, 7, and

action, d.
State d=1(Keep) d =2 (Replace)
¢ = 1 (low yielding) 5,000 kg 5,000 kg
i = 2 (average yielding) 6,000 kg 6,000 kg
¢ = 3 (high yielding) 7,000 kg 7,000 kg

Having observed the state, we have to take an action concerning the cow. We
assume that the action is either to keep the cow for at least an additional stage or to
replace it by a heifer at the end of the stage.

The economic net returns (gross margin) from the cow will of course depend on
whether it is low yielding or high yielding and whether it is kept or replaced. In the
model this is represented by a reward depending on state and action as appearing in
Table 13.1. Those amounts are simply the annual net returns from a low, average
and high yielding cow respectively. If the action replace is taken, we assume that
the replacement takes place at the end of the stage at a cost of 1,000 DKK.

In this example, we shall define the milk yield during a stage as the physical
output. In Table 13.2, the expected milk yield depending on state and action is
shown. Since replacement is assumed to take place at the end of a stage, the milk
yield will not depend on the action.

If a cow has been low yielding during a stage, there is large risk, that it will
also be low yielding during the following stage if it is kept. This is illustrated by
the transition probabilities from state ¢ at a stage to state j at the following stage.
We assume that the probability to remain at the same level of milk yield is 0.6. The
probability of transition to an other level is assumed to be 0.3 from low (or high)
to average and 0.1 from low to high or vice versa, if the cow is kept. On the other
hand, if it is replaced, we assume that there are equal probabilities of the new heifer
to be low, average or high yielding. All transition probabilities are shown in Table
13.3.

All parameters of a traditional Markov decision process are now defined, and
we may consider what policy to follow. A policy is defined as a map (rule) that
tells us which action to take if a certain state is observed. An example of a logical
policy in this very simple case would be to replace if the cow is low yielding and
keep if it is average or high yielding.

Our problem is now to determine an optimal policy, which in some sense max-
imizes the net returns of the dairy farmer. In the following section the phrase
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Table 13.3: Transition probabilities from state ¢ at a stage to state j at the following

stage.
State at present stage d =1 (Keep) d = 2 (Replace)
j=1 j7=2 4j=3 j=1 37=2 45=3
» @ H » @ H
i=1() 0.6 0.3 0.1 0.333 0.333 0.333
i =2(A) 0.2 0.6 0.2 0.333 0.333 0.333
t=3H) 0.1 0.3 0.6 0.333 0.333 0.333

“in some sense maximizes” is clarified. Afterwards, a survey of optimization tech-
niques is given. Throughout the discussion we shall refer to this numerical example
as the simple dairy model.

13.2.3 Criteria of optimality
Finite planning horizon

A farmer, who knows that he is going to terminate his production after N stages,
may use the maximization of total expected rewards as his criterion of optimality.
The corresponding objective function A is

N
h(s',...,s")=E < Zr;’(’n)> , (13.1)
n=1

where E denotes the expected value, s™ is the policy at stage n, and I(n) is the (un-
known) state at stage n. Applying this criterion to the simple dairy model means
that the the total expected net returns over a fixed number (V) of years are maxi-
mized.

If the farmer has a time preference, so that he prefers an immediate reward to
an identical reward later on, a better criterion is the maximization of total expected
discounted rewards. If all stages are of equal length, this is equal to applying the
objective function

N
h(s',..,sN)=E (Z /3"—1r§?n)> , (13.2)

n=1

where 0 < 8 < 1 is the discount factor defined by the interest rate and the stage
length.

Infinite planning horizon

A situation where the stage of termination is unknown (but at least far ahead) is
usually modeled by an infinite planning horizon (i.e. N = 00). In that case the
optimal policy is constant over stages. The function 13.1 cannot be applied in this
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situation, but since § < 1, the function 13.2 will converge towards a fixed value
for N becoming very large. Thus the objective function is given by

h(s)=E (Z ﬁ“—lr;(n)> . (13.3)
n=1

Since, usually, each animal and its future successors are represented by a sep-
arate Markov decision process, this criterion together with the criterion 13.2, are
equal to the maximization of total discounted net revenues per animal. Such a cri-
terion is relevant in a situation where a limiting housing capacity is the only (or at
least the most limiting) herd restraint.

An alternative criterion under infinite planning horizon is the maximization of
expected average reward per unit of time. If all stages are of equal length, the
objective function in this situation is

h(s)=g° =Y mrs, (13.4)
=1

where 7 is the limiting state probability under the policy s (i.e. when the policy
is kept constant over an infinite number of stages). This criterion maximizes the
average net revenues per stage, i.e. over time. In the simple dairy model, appli-
cation of this criterion indicates that average annual net returns are maximized. It
may be relevant under the same conditions as criterion 13.3 if an animal and its
future successors are represented by a separate Markov decision process. Practical
experience shows that the optimal replacement policies determined under criteria
(13.3) and (13.4) are almost identical.

If a herd restraint (e.g. a milk quota) is imposed on the physical output, a
relevant criterion may be the maximization of expected average reward per unit of
physical output using the objective function

S (4 S S
h(s) = g° = I — Z= T (13.5)
Gin i1 T

In case of a milk quota, the physical output m; is the milk produced by a
cow in state ¢ under policy s, and accordingly, average net returns per kg milk is
maximized in the simple dairy model. The function 13.5 is also relevant if the
criterion is the maximization of the expected average reward over time in a model
where the stage length varies. In that case the physical output represents the stage
length. It should be noticed that if m¢ = 1 for all i and d, the function 13.5 is
identical to 13.4. The symbol g; is the average reward over stages (equal to ¢g° of
Eq. (13.4)) and g;, is the average physical output over stages.
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13.2.4 Optimization techniques in general Markov decision program-
ming

Value iteration

Under finite planning horizon the value iteration method is excellent. The optimal
policies are determined sequentially using the functional equations

u
fin) =max ¢ri+ 8 plifin—1) 4, i=1..u, (13.6)
j=1

where the action d maximizing the right hand side is optimal for state ¢ at the stage
in question. The function f;(n) is the total expected discounted rewards from the
process when it starts from state ¢ and will operate for n stages before termination.
Thus f;(0) is the salvage value of the system when it is in state 7. At each stage an
optimal policy is chosen using Eqs. (13.6). If the objective function (13.1) is used,
B = 1in Eq. (13.6). Otherwise (3 is the discount factor.

Under infinite planning horizon, the value iteration method may be used to
approximate an optimal policy. Under the objective function 13.3 it is possible to
show that (Howard, 1960)

lim fi(n)=f;, i=1,..,u, (13.7)

n—o0

where f; for fixed ¢ is a constant. By using Eqgs. (13.6) over a large number of
stages, we will sooner or later observe that f;(n + 1) is almost equal to f;(n) for
all 4. Further, we will observe that the same policy is chosen during several stages.
We can feel rather sure that such a policy is close to be optimal, but there is no
guarantee that it is identical to an optimal policy. For practical purposes, however,
the approximation usually suffices.

Since the objective function (13.4) is just a special case of function (13.5),
where m; = 1 for all 7 and d, we shall only consider the criterion given by (13.5).
In this case f;(n) is the total expected rewards when the process starts from the
beginning of a stage in state ¢ and will operate until n units of physical output
have been produced. Under the criterion given by the objective function (13.4), the
production of n units of output is just the operation of the process over n stages. It
is assumed that the physical output only takes integer values (for practical purpose
this is just a question of selecting an appropriate unit). According to Howard (1971)
an optimal policy for producing n units of output (i.e. a policy that maximizes the
expected reward of producing n units) is determined recursively by the relations
t=1,...,u):
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filn) = max a(::;—i-fi(())>+(1—a) rfl—i-jz:;p?jfj(n—m?) ,

where
. 1, mzd >n
“ = {07 mé <n
(13.8)

This is under the assumption that the reward/output rate has the constant value
of rgi / m? during the entire stage. However, since the physical output is bounded,

it is easily seen that for n sufficiently large, a = 0. Hence we getfori =1,...,u
u
d d d
filn) = max 75 + z;pijfj (n—mj) », largen. (13.9)
]:

Thus in the long run, the assumption concerning constant reward/output rate in all
states will have no effect. The equivalence of Eq. (13.7) is in this case

Tim (fi(n) = filn — 1)) = g, (13.10)

and sooner or later the policy will not differ from step to step of Egs. (13.9).

Further details on the value iteration method are given by Howard (1960, 1971).
It should particularly be noticed that m¢, which in this study is interpreted as a
physical output (e.g. milk yield), in the study by Howard (1971) is interpreted as
the expected stage length when state ¢ is observed under the action d. Thus, in his
model the criterion (13.5) is the expected average reward over time. Compared to
Eq. (13.9), Howard (1971) described a more general case where the stage length is
a random variable of which the distribution is given by the action and the present
state as well as the state to be observed at the next stage. Furthermore, the reward
depends on the state combination, the action and the stage length. The interpreta-
tion as physical output has been discussed by Kristensen (1991).

The value iteration method is identical to what is usually referred to as dynamic
programming, successive iteration or successive approximation.

The simple dairy model optimized by value iteration

If we assume the discount factor, 3, to be 0.85 and the salvage value of the system
to be zero (independently of terminal state and action), we may directly apply the
value iteration method as described by Eqgs. (13.6). In Table 13.4, the results are
shown stage by stage backwards from n = 1 to n = 64 (some stages omitted).
For any time horizon n, we may read the optimal policy directly from the table
as the decisions d; for low yielding cows, dg for cows of average milk yield and
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Table 13.4: The value iteration method of Egs. (13.6) applied to the simple dairy

model.

n o di filn) Afiln)* da foln) Afa(n)* ds  fz(n) Afs(n)*
1 1 10000 10000 1 12000 12000 1 14000 14000
2 1 19350 9350 1 22200 10200 1 25050 11050
3 2 27870 8520 1 30870 8670 1 34081 9031
4 2 35299 7429 1 38275 7405 1 41622 7541
5 2 41639 6340 1 44597 6322 1 47988 6366
6 2 47030 5391 1 49981 5384 1 53385 5397
7 2 51612 4582 1 54561 4580 1 57969 4584
8 2 55507 3895 1 58455 3894 1 61864 3895
9 2 58817 3310 1 61765 3310 1 65175 3311
10 2 61631 2814 1 64579 2814 1 67989 2814
20 2 74437 554 1 77385 554 1 80795 554
30 2 76958 109 1 79906 109 1 83316 109
40 2 77455 21 1 80402 21 1 83812 21
50 2 77552 4 1 80500 4 1 83910 4
60 2 77572 1 1 80519 1 1 83929 1
61 2 77572 1 1 80520 1 1 83930 1
62 2 77573 1 1 80520 1 1 83930 1
63 2 77573 1 1 80521 1 1 83931 1
64 2 TI574 0 1 80521 0 1 83931 0

*Afi(n) = fi(n) — fi(n — 1)
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Table 13.5: The value iteration method of Eqgs. (13.9) applied to the simple dairy

model.
n di  filn) Afi(n)* do fo(n) Afa(n)* d3  f3(n) Afs(n)”
1 1 10000 10000 1 12000 12000 1 14000 14000
2 1 21000 11000 1 24000 12000 1 27000 13000
3 2 33000 12000 1 36000 12000 1 39500 12500
4 2 45167 12167 1 48100 12100 1 51800 12300
5 2 57355 12189 1 60253 12153 1 64027 12227
6 2 69545 12190 1 72428 12175 1 76228 12201
7 2 81734 12189 1 84612 12183 1 88420 12192
8 2 93922 12188 1 96798 12186 1 100609 12189
9 2 106109 12188 1 108985 12187 1 112797 12188
10 2 118297 12188 1 121172 12187 1 124984 12188
11 2 130484 12187 1 133359 12187 1 137172 12188
12 2 142672 12187 1 145547 12187 1 149359 12188
13 2 154859 12187 1 157734 12187 1 161547 12187
14 2 167047 12187 1 169922 12187 1 173734 12187
15 2 179234 12187 1 182109 12187 1 185922 12187
"Afi(n) = fi(n) = fi(n — 1)

dg for high yielding cows. If, for instance, we assume a time horizon of n = 10
stages, we see that low yielding cows should be replaced whereas average and high
yielding cows should be kept. We also observe, that for values of n higher than 3,
the optimal policy does not vary over stages.

The columns f;(n) show the expected present value of the chain (i.e. the
present cow and its future successors), when the present cow is in state ¢ and n
stages remain in the time horizon. From the table we observe, that the present
values of the three states converges towards fixed values in accordance with Eq.
(13.7). Those values appear to be (close to) 77,574 DKK, 80,521 DKK and 83,931
DKK for low, average and high yielding cows respectively. The differences be-
tween these figures represent the relative values of the three states. For instance,
80,521 — 77,574 = 2,947 is the economic advantage of having a cow of average
milk yield instead of a low yielding cow.

In Table 13.5, the corresponding results for the value iteration method under
the criterion (13.4) are shown. The optimal policies appear to be exactly identical
to those of Table 13.4. Under this criterion, however, the value functions f;(n) does
not converge towards fixed values, because no discounting is involved. Instead, we
see from Table 13.5 that the increments, A f;(n) = fi(n)— fi(n—1), in accordance
with Eq. (13.10), converge towards a fixed value of 12,187 DKK independently
of state. Thus, 12,187 is the numerical value of g, the annual net returns being
maximized under this criterion.

It is also possible to calculate the economic benefit of, for instance, state 2
(average milk yield) over state 1 (low milk yield) from Table 13.5. If we use the
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Table 13.6: Equations and expressions to be used in the policy iteration cycle with
different objective functions.

Ob;. Linear equations of Step 2 Expression
func. Equations, i =1,...,u Unknowns  Add. eq. Step 3
(133) [ =rit B, oyl Tk : i+ BY, PG
(34 g+ fr=ri+d,05f ¢ fifi fi=0 i+ 0

(13.5) g*mi + ff =r5 + 30505 0% fiv Sy fo=0 rf—gmd+ > plfs

figures relating to n = 15, the benefit mentioned is (182,109 — 15 x 12,187) —
(179,234 — 15 x 12,187) = —696 — (—3,571) = 2, 875. This figure is very close
to the corresponding value (2,947) calculated from Table 13.4. This observation
confirms the remark in relation to Criterion (13.4), that in practice results from this
criterion only slightly differ from those under Criterion (13.3).

Policy iteration

Under infinite planning horizon, the policy iteration method may be applied. Un-
like the value iteration method it always provides an optimal policy. It covers all
three objective functions (13.3), (13.4) and (13.5). The iteration cycle used for
optimization has the following steps:

1. Choose an arbitrary policy s. Go to 2.

2. Solve the set of linear simultaneous equations appearing in Table 13.6. Go
to 3.

3. For each state, 4, find the action d’ that maximizes the expression given in
Table 13.6, and put s'(i) = d'. If s’ = s, then stop, since an optimal policy
is found. Otherwise redefine s according to the new policy (i.e. put s = s’
and go back to 2.

From the equations and expressions of Table 13.6, we see that also with the
policy iteration method, the objective function (13.4) is just a special case of (13.5),
where m; = 1 for all 7 and s. For the objective functions (13.3) and (13.4) the
policy iteration method was developed by Howard (1960), and for the function
(13.5) a policy iteration method was presented by Jewell (1963). Like Howard
(1971), Jewell (1963) interpreted m;-i as the expected stage length.

Under Criterion (13.3), f; is the total present value of the expected future re-
wards of a process starting in state ¢ and running over an infinite number of stages
following the constant policy s. Under Criterions (13.4) and (13.5), f7 is the rel-
ative value of state 7 under the policy s. The difference in relative values between
two states equals the amount of money a rational person is just willing to pay in
order to start in the highest ranking of the two states instead of the lowest ranking.
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The absolute value of f; is determined arbitrarily by the additional equation of Ta-
ble 13.6, where the relative value of state v is defined to be zero. The interpretation
of relative values is discussed in details by Kristensen (1991).

Linear programming

Under an infinite planning horizon, linear programming is a possible optimization
technique. When the criterion (13.3) is applied, the linear programming problem
becomes (Ross, 1970)

u
in = Max!
i=1
subject to (13.11)

u
zi—BY pha; > 1l alldeD, i=1,..u.
j=1

It appears from 13.11 that each combination of state and action is represented by
exactly one restriction. An action d is optimal in state ¢ if, and only if, the corre-
sponding restriction is satisfied as an equation when the values of z1, .. ., x,, arises
from an optimal solution to the linear programming problem. The optimal values
of x1,...,x, are equal to the present values f7, ..., f;; under an optimal policy.

If the objective function (13.4) is applied, the linear programming problem
becomes

Z Z rded = Max!

i=1deD
subject to
u
doal =D > el = 0 i=l..u (13.12)
deD j=1deD
u
2.0 e =1
i=1deD

¢ > 0, deD, i=1,..,u.
In this case an action d is optimal in state ¢ if, and only if, mgl from the optimal
solution is strictly positive. The optimal value of the objective function is equal
to the average rewards per stage under an optimal policy. The optimal value of
> odeD x? is equal to the limiting state probability m; under an optimal policy.

Using Criterion (13.5), we may solve the following linear programming prob-
lem (Kennedy, 1986):
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am = Maxzx!
subject to (13.13)
u—1
—Ti Zp%a:j - m(iimu < _Tzd _pglua7 deD, i=1,..,u—-1
j=1

u—1
Zpgjxj —miz, < —rd —pla+a, deD
j=1

T = O, i=1,...,u,

where a is a pre-determined relative value of state u chosen sufficiently large to
ensure that all other relative values are positive. The optimal value of the objec-
tive function of the linear programming problem is equal to the expected average
reward per unit of output as defined in Eq. (13.5) under an optimal policy. The
optimal values of the variables x1, ..., x,_1 are equal to the relative values of the
states 1,...,u — 1, provided that the relative value of state u is equal to a . As
it appears, each combination of state and action is represented by one, and only
one, restriction. An action is optimal in a state if, and only if, the corresponding
restriction is satisfied as an equation in the optimal solution.

Since Criterion (13.4) is just a special case of (13.5) with all physical outputs
set to the value 1, the linear programming problem (13.13) may also be used in the
determination of an optimal policy under Criterion (13.4).

13.2.5 Discussion and applications

Under finite planning horizon, the value iteration method is perfect, but in herd
management models the planning horizon is rarely well defined. Most often the
process is assumed to operate over an unknown period of time with no pre-determined
stage of termination. In such cases the abstraction of an infinite planning horizon
seems more relevant. Therefore we shall pay specific attention to the optimiza-
tion problem under the criteria (13.3), (13.4) and (13.5) where all three techniques
described in the previous sections are available.

The value iteration method is not exact, and the convergence is rather slow.
On the other hand, the mathematical formulation is very simple, and the method
makes it possible to handle very large models with thousands of states. Further it
is possible to let the reward and/or the physical output depend on the stage number
in some pre-defined way. This has been mentioned by van Arendonk (1984) as an
advantage in modeling genetic improvement over time. The method has been used
in a lot of dairy cow replacement models as an approximation to the infinite stage
optimum. Thus it has been used by Jenkins and Halter (1963); Giaever (1966);
Smith (1971); McArthur (1973); Stewart et al. (1977, 1978); Killen and Kearney
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(1978); Ben-Ari et al. (1983); van Arendonk (1985, 1986); van Arendonk and Di-
jkhuizen (1985); DeLorenzo et al. (1992); McCullough and DeLorenzo (1996a,b).
Some of the models mentioned have been very large. For instance, the model by
van Arendonk and Dijkhuizen (1985) contained 174 000 states (reported by van
Arendonk, 1988). In sows, the method has been used by Huirne et al. (1988).

The policy iteration method has almost exactly the opposite characteristics of
the value iteration method. Because of the more complicated mathematical for-
mulation involving solution of large systems of simultaneous linear equations, the
method can only handle rather small models with, say, a few hundred states. The
solution of the linear equations implies the inversion of a matrix of the size u X wu,
which is rather complicated. On the other hand, the method is exact and very ef-
ficient in the sense of fast convergence. The rewards are not allowed to depend
on the stage except for a fixed rate of annual increase (e.g. inflation) or decrease.
However, a seasonal variation in rewards or physical outputs is easily modeled by
including a state variable describing season (each state is usually defined by the
value of a number of state variables describing the system).

An advantage of the policy iteration method is that the equations in Table 13.6
are general. Under any policy, s, we are able to calculate directly the economic
consequences of following the policy by solution of the equations. This makes it
possible to compare the economic consequences of various non-optimal policies to
those of the optimal. Further we may use the equations belonging to the criterion
(13.5) to calculate the long run technical results under a given policy by redefining
r; and m;. If for instance r; = 1 if a calving takes place and zero otherwise, and
mS is the stage length when state ¢ is observed under policy s, then g°, which is the
average number of calvings per cow per year, may be determined from the equa-
tions. Further examples are discussed by Kristensen (1991). For an example where
the equations are used for calculation of the economic value of culling information,
reference is made to Kristensen and Thysen (1991).

The policy iteration method has been used by Reenberg (1979) and Kristensen
and @stergaard (1982). The models were very small, containing only 9 and 177
states, respectively.

13.3 The curse of dimensionality: Hierarchical Markov
processes

In order to combine the computational advantages of the value iteration method
with the exactness and efficiency of the policy iteration method Kristensen (1988,
1991) introduced a new notion of a hierarchical Markov process. It is a contribution
to the solution of the problem referred to as the “curse of dimensionality” since
it makes it possible to give exact solutions to models with even very large state
spaces.
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Table 13.7: Rewards (annual net returns) and outputs (annual milk yield) of ex-
tended model.

Rewards, 7¢ Outputs, mJ
¢ Lactation Yield d=1(K) d=2(R) d=1(K) d=2(R)
1 1 Low 8,000 7,000 4,000 4,000
2 1 Ave. 10,000 9,000 5,000 5,000
3 1 High 12,000 11,000 6,000 6,000
4 2 Low 10,000 9,000 5,000 5,000
5 2 Ave. 12,000 11,000 6,000 6,000
6 2 High 14,000 13,000 7,000 7,000
7 3 Low 10,000 9,000 5,000 5,000
8 3 Ave. 12,000 11,000 6,000 6,000
9 3 High 14,000 13,000 7,000 7,000
10 4 Low 8,000 8,000 4,500 4,500
11 4 Ave. 10,000 10,000 5,500 5,500
12 4 High 12,000 12,000 6,500 6,500

13.3.1 The curse of dimensionality

In order to illustrate how the curse of dimensionality arises, we shall reexamine
the simple dairy model used in the previous sections. First we shall realize that
the age of the animal is not represented. Thus, if a cow remains high yielding it
will never be replaced according to the optimal policies shown in Tables 13.4 and
13.5. This is certainly not realistic, and furthermore, the milk yield also depends on
the lactation number. In order to account for age we shall introduce an additional
state variable representing the lactation number of the cow. For convenience, we
shall assume that the new variable may take the values 1, 2, 3 or 4 indicating that
the maximum age of a cow in this (still very simple) model is assumed to be 4
lactations.

The milk yields (i.e. outputs mf) and economic net returns (i.e. rewards rl‘-l)
assumed for this slightly extended model appear in Table 13.7. Because a cow is
always replaced after 4 lactations, the rewards are identical under both actions for
those states representing 4th lactation.

The transition matrices of the extended model are shown in Tables 13.8 and
13.9. It should be emphasizes that the state variable concerning milk yield should
be interpreted relatively for a cow of the parity in question. As long as a cow is kept,
it is assumed to change relative level of milk yield with the same probabilities as in
the simple model, but when a replacement takes place, the new heifer is assumed
to be low, average or high yielding with equal probabilities.

Inspection of the new matrices clearly illustrate that this very modest extension
of the model causes a rather dramatic increase of the dimensions.

Now, suppose that we in addition to lactation and milk yield also want to take
the genetic merit into account. We shall assume that the genetic merit of the cow
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Table 13.8: Transition matrix of the extended model under action 1 (Keep).

jl 1 2 3 4 5 6 7 8 9 10 11 12

I | 1 1 1 2 2 2 3 3 3 4 4 4
i 4 Y| L A H L A H L A H L A H
1 1 L[| O 0 0 06 03 01 O 0 0 0 0 0
2 1 Al O 0 0 02 06 02 O 0 0 0 0 0
3 1 H| O 0 0 01 03 06 O 0 0 0 0 0
4 2 L] O 0 0 0 0 0 06 03 01 O 0 0
5 2 A O 0 0 0 0 0 02 06 02 O 0 0
6 2 H| O 0 0 0 0 0 01 03 06 O 0 0
7 3 L| O 0 0 0 0 0 0 0 0 06 03 0.1
8 3 A| O 0 0 0 0 0 0 0 0 02 06 02
9 3 H| O 0 0 0 0 0 0 0 0 01 03 06
10 4 L |13 173 113 0 0 0 0 0 0 0 0 0
11 4 A|1/3 1/3 13 0 0 0 0 0 0 0 0 0
12 4 H |13 173 113 0 0 0 0 0 0 0 0 0

Legends: [; = lactation number of state . Y = Milk yield indicated as L=Low,

A=Average or H=High.

Table 13.9: Transition matrix of the extended model under action 2 (Replace).
i1 2 3 4 5 6 7 8 9 10 11 12
L] 1 1 1 2 2 2 3 3 3 4 4 4

i+ l;, Y 'L A H L A HL A H L A H

1 1 {13 113 113 0 0 0 O O O O O O

2 1 A(113 13 113 0 0 0 0 O O O O oO

31 H|{1/3 13 1/3 0 0 0 O O O O O O

4 2 L |13 13 1130 0 0 O O O O O O

5 2 A(1/3 13 173 0 0 0 O O O O O O

6 2 H|(1/3 13 1/3 0 0 0 O O O O O O

7 3 L|1/3 13 173 0 0 0 O O O O O O

8 3 A|1/3 113 1/3 0 0 0 0 0O O O O O

9 3 H|(1/3 13 173 0 0 0 O O O O O O

10 4 L{1/3 113 1/3 0 0 0 O O O O O O

1m 4 Ay1/3 173 113 0 0 0 0 0O O O O O

12 4 H|1/3 1/3 1/73 0 0 0 0 O O O O O

Legends: [; = lactation number of state 2. Y = Milk yield indicated as L=Low,

A=Average or H=High.
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is either "Bad", "Average" or "Good". When a cow is replaced we assume that the
probability of the new heifer to be either genetically "Bad", "Average" or "Good"
is 1/3 each. The total size of the state space then becomes 3 x 4 x 3 = 36. The
milk yields mgl and rewards rf appear from Table 13.10. The transition matrices of
this 36-state model are now very large. They are shown in Appendix E as Tables
E.1 - E.6 for actions "Keep" and "Replace”, respectively.

This stepwise extension of the model clearly illustrates that each time a new
state variable at n levels is added to the model, the size of the state space is in-
creased by a factor of n. When, in a real model, several traits are represented
by state variables at a realistic number of levels, the size of the state space very
soon reaches prohibitive dimensions (millions of states). As an example, consider
the dairy cow replacement model presented by Houben et al. (1994). The traits
considered, when a decision was made, were

The age of the cow (204 levels).

Milk yield in present lactation (15 levels).

Milk yield in previous lactation (15 levels).

Time interval between 2 successive calvings (8 levels)

Clinical mastitis - an infectious disease in the udder (2 levels - yes/no).

e Accumulated number of mastitis cases in present lactation (4 levels).

In principle the size of the state space is formed as the product of the number
of levels of all traits, i.e. 204 x 15 x ... x 4 = 11,750,400 states. In practise
it is smaller because some combinations are impossible and because the traits re-
lated to previous lactation are not considered during first lactation. Exclusion of
such not feasible states resulted in a model with 6,821,724 different states. The
model described only considers traits that vary over time for the same animal. If
furthermore, we wish to include permanent traits of the present animal (like the
genetic merit of the 36-state model) being considered for replacement, the state
space would become even larger. In order to circumvent this curse of dimension-
ality, Kristensen (1988, 1991) introduced a new notion of a hierarchical Markov
process, which is described in the following sections.

13.3.2 Notation and terminology

A hierarchical Markov process is only relevant under infinite planning horizon, and
there is no relevance of the criterion (13.4) because the special situation where the
physical output equals 1 in all stages has no computational advantages over other
values. Therefore we shall only consider the criteria (13.3) and (13.5).

A hierarchical Markov process is a series of Markov decision processes called
child processes built together in one Markov decision process called the founder
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Table 13.10: Rewards and outputs of the 36 state model.

Gen. Rewards, r;i Outputs, mf

i merit Lact. Yield d=1(K) d=2(R) d=1K) d=2(R)

1 Bad 1 Low 6,000 5,000 3,000 3,000

2 Bad 1 Ave. 8,000 7,000 4,000 4,000

3 Bad 1 High 10,000 9,000 5,000 5,000

4 Bad 2 Low 8,000 7,000 4,000 4,000

5 Bad 2 Ave. 10,000 9,000 5,000 5,000

6 Bad 2 High 12,000 11,000 6,000 6,000

7 Bad 3 Low 8,000 7,000 4,000 4,000

8 Bad 3 Ave. 10,000 9,000 5,000 5,000

9 Bad 3 High 12,000 11,000 6,000 6,000
10 Bad 4 Low 6,000 6,000 3,500 3,500
11 Bad 4 Ave. 8,000 8,000 4,500 4,500
12 Bad 4 High 10,000 10,000 5,500 5,500
13 Ave. 1 Low 8,000 7,000 4,000 4,000
14 Ave. 1 Ave. 10,000 9,000 5,000 5,000
15 Ave. 1 High 12,000 11,000 6,000 6,000
16  Ave. 2 Low 10,000 9,000 5,000 5,000
17  Ave. 2 Ave. 12,000 11,000 6,000 6,000
18 Ave. 2 High 14,000 13,000 7,000 7,000
19  Ave. 3 Low 10,000 9,000 5,000 5,000
20  Ave. 3 Ave. 12,000 11,000 6,000 6,000
21  Ave. 3 High 14,000 13,000 7,000 7,000
22 Ave. 4 Low 8,000 8,000 4,500 4,500
23 Ave. 4 Ave. 10,000 10,000 5,500 5,500
24 Ave. 4 High 12,000 12,000 6,500 6,500
25 Good 1 Low 10,000 9,000 5,000 5,000
26 Good 1 Ave. 12,000 11,000 6,000 6,000
27 Good 1 High 14,000 13,000 7,000 7,000
28 Good 2 Low 12,000 11,000 6,000 6,000
29 Good 2 Ave. 14,000 13,000 7,000 7,000
30 Good 2 High 16,000 15,000 8,000 8,000
31 Good 3 Low 12,000 11,000 6,000 6,000
32 Good 3 Ave. 14,000 13,000 7,000 7,000
33  Good 3 High 16,000 15,000 8,000 8,000
34  Good 4 Low 10,000 10,000 5,500 5,500
35 Good 4 Ave. 12,000 12,000 6,500 6,500
36 Good 4 High 14,000 14,000 7,500 7,500
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process'. A child process is a finite time Markov decision process with N stages
and a finite state space €2, = {1,...,u,} for stage n, 1 < n < N. The action set
D,, of the nth stage is assumed to be finite, too. A policy s of a child process is a
map assigning to each stage n and state i € ,, an action s(n, i) € D,,. The set of
all possible policies of a child process is denoted I'. When the state ¢ is observed
and the action d is taken, a reward 4(n) is gained. The corresponding physical
output is denoted as md(n). Let p3 J( n) be the transition probability from state i
to state j where i is the state at the nth stage, j is the state at the following stage
and d is the action taken at stage n. Under the Criterion (13.3) we shall denote the
discount factor in state ¢ under the action d as ﬁz‘»i(n) assuming that the stage length
is given by stage, state and action.

Assume that we have a set of v possible child processes each having its own
individual set of parameters. The founder process is then a Markov decision pro-
cess running over an infinite number of stages and having the finite state space
{1,...,v}. Each stage in this process represents a particular child process. The
action sets of the main process are the sets I',, ¢ = 1,..., v, of all possible poli-
cies of the individual child processes (to avoid ambiguity the states of the founder
process will be denoted by Greek letters ¢, « etc.). A policy o is a map assigning
to each state, ¢, of the founder process an action o(¢) € I',. The transition matrix
of the founder process has the dimension v x v, and it is denoted ® = {¢,, }. The
transition probabilities are assumed to be independent of the action taken. The re-
ward f7 and the physical output 47 in state ¢ of the founder process are determined
from the total rewards and output functions of the corresponding subprocess as

Un+1
fn) = rin)+ B0 pr n)fjn+1), n=1,.,N-1,
and,
7= om0 ), s=0(), (13.14)
i=1

and analogously for h? (except for the discount factor). The symbol p;(0) is the
probability of observing state ¢ at the first stage of the child process. Finally, the
expected discount factor in state ¢ under the action s is denoted as B; and calculated
as follows

'In some texts, a child process is called a sub process, and the founder process is called the main
process.
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bi(n) = Bi(n), n=N,

bi(n) = Bi(n) Y p(nbi(n+1), n=1,.,N-1,
i=1
and,

B = > pi(0)5(1). (13.15)
=1

13.3.3 Optimization

Since the founder process is just an ordinary Markov decision process, the policy
iteration cycle described previously might be used directly for optimization. In
practice Steps 1 and 2 are easily carried out, but Step 3 is prohibitive because of
the extremely large number of alternative actions s € I', (as mentioned above s is
an entire policy of the «th child process). To circumvent this problem Kristensen
(1988, 1991) constructed an iterative method, where a value iteration method is
applied in the child processes and the results are used in Step 3 of the policy itera-
tion method of the founder process. The different versions of the method cover the
criteria of optimality under infinite planning horizon defined as (13.3) and (13.5).
Since criterion (13.4) is a special case of (13.5) it is also indirectly covered.

The general form of the iteration cycle of a hierarchical Markov process has
the following steps:

1. Choose an arbitrary policy, . Go to 2.

2. Solve the following set of linear simultaneous equations for /7, ..., 7 and
in case of Criterion (13.5) for ¢°:

v
9°h +F7 = f7+ B buF, t=1,..,0. (13.16)
k=1

In case of Criterion (13.5) the additional equation F;J = 0 is necessary in
order to determine a unique solution. Go to 3.

3. Define

T, = Z O 34 (13.17)
k=1
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under Criterion (13.3) and 7, = 0 under Criterion (13.5). For each child
process, ¢, find by means of the recurrence equations

1,i(n) = max {rf(n) — mg(n)ga + Bfl(N)TL} , n=N

Un+1

T,i(n) = max r?(n)— ( n)g’ —I—ﬁd pr )Ti(n+1) 2,

n=1,.,.N—-1 (13.18)

a policy s’ of the child process. The action s'(n) is equal to the d’ that
maximizes the right hand side of the recurrence equation of state ¢ at stage
n. Put o’'(1) = &' for. = 1,...,v. If o’ = &, then stop since an optimal
policy is found. Otherwise, redefine o according to the new policy (i.e. put
o = o’ and go back to 2.

When the iteration cycle is used under Criterion (13.3) all physical outputs
(m¢(n) and accordingly also h?) are put equal to zero. The iteration cycle covering
this situation was developed by Kristensen (1988).

Under Criterion (13.4) all physical outputs, m;-i(n), and all discount factors
ﬁ,fl(n) and B/ are put equal to 1, but under Criterion (13.5) only the discount fac-
tors are put equal to 1. The iteration cycle covering these situations was described
by Kristensen (1991).

13.3.4 Discussion and applications

The hierarchical Markov process is specially designed to fit the structure of animal
decision problems where the successive stages of the child processes correspond
to the age of the animal in question. By appropriate selection of state spaces in the
child processes and the founder process it is possible to find optimal solutions to
even very large models. The idea is to let the number of states in the child processes
(where a value iteration technique is applied) be very large and only include very
few states in the main process (where the technique is directly based on the policy
iteration method). Thus we have got a method which is at the same time fast, exact
and able to handle very large models.

Kristensen (1987) used the technique in a dairy cow replacement model which
in a traditional formulation as an ordinary Markov decision process would have
contained approximately 60,000 states, and later Kristensen (1989) in a model with
approximately 180 000 states. In both cases the number of states in the founder
process was only 5, reducing Step 2 to the solution of only 5 simultaneous linear
equations (versus 180,000 in a traditional formulation). Haran (1997) also built
a dairy cow replacement model based on a hierarchical Markov process. Also
Houben et al. (1994) used the method in a dairy cow replacement model. The
reduction of the system of equations was in their case from 6,821,724 to just 1,
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because no permanent traits were considered in the model. An interesting aspect
of their model is that for the first time a disease is taken into account.

In a different application area, Mourits et al. (1999) used a hierarchical Markov
process in the determination of optimal feeding level and insemination age for dairy
heifers. Similar ideas for use in fattening of bull calves have been presented by
Makulska and Kristensen (1999).

In sows, Huirne et al. (1993) seem to have applied a technique which in many
aspects is similar to a hierarchical Markov process, but they have not explained
their method in all details. Also Jgrgensen (1992) has applied a technique which
is inspired of a hierarchical Markov process in a sow replacement model, and later
(Jgrgensen, 1993), he used the hierarchical method in the determination of optimal
delivery policies in slaughter pigs. Also Broekmans (1992) used the method in the
determination of optimal delivery policies in slaugther pigs taking random varia-
tion in prices into account. More recent applications to slaughter pigs include Kure
(1997) and, in particular, Toft et al. (2005) who studied the influence of epidemic
diseases on the slaughter policies. Verstegen et al. (1998) used the technique in an
experimental economics study investigating the utility value of management infor-
mation systems. They used a formulation involving Bayesian updating of traits as
described by Kristensen (1993).

Naturally the hierarchical model just described may also be formulated as an
ordinary Markov decision process. In that case each combination of child process
(founder state), stage and state should be interpreted as a state. We shall denote a
state in the transformed process as (¢nt), and the parameters are

Tzlm' = T'Ei(n),
mflm = mfl(n) )
Bhi = Bi(n), (13.19)
pl(n), t=rAm=n—1
p?m’i)(nmj) = oupi(0), n=NAm=1 ,
0, otherwise

where the parameters mentioned on the right hand side of the equations are those
belonging to the «th child process except for p;(0) which belongs to child process
. This formulation of course has the same optimal policies as the hierarchical for-
mulation, so it is only computational advantages that make the hierarchical model
relevant. A comparison to traditional methods may therefore be relevant.

Since the policy iteration method involves the solution of a set of u equations
(where u is the number of states) it is only relevant for small models. The value
iteration method, however, has been used with even very large models and may
handle problems of the same size as the hierarchical formulation, but the time spend
on optimization is much lower under the hierarchical formulation. To recognize
this, we shall compare the calculations involved.
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Step 3 of the hierarchical optimization involves exactly the same number of
operations as one iteration of the value iteration method (Eq. 13.6). The further
needs of the hierarchical method are the calculation of the rewards and either the
physical output or the expected discount factor of a stage in the founder process
according to Eqgs. (13.14) and (13.15). Since the calculations at each stage is
only carried out for one action, the calculation of both founder state parameters
involves approximately the same number of operations as one iteration under the
value iteration method if the number of alternative actions is 2. If the number of
actions is higher, the calculations relatively involves a lower number of operations
than an iteration under the value iteration method. These considerations are based
on the assumption that the value iteration method is programmed in an efficient
way, so that the sum of Eq. (13.6) is not calculated as a sum of all u elements,
but only as a sum of those elements where pfj is not zero according to Eq. (13.19).
Otherwise the hierarchical technique will be even more superior. Finally the system
of linear equations of Step 2 of the hierarchical cycle must be solved, but in large
models with only a few states in the founder process the time spent on this is
negligible.

If we use the considerations above in a practical example, the advantages of the
hierarchical technique becomes obvious. As reported by Kristensen (1991) a model
with 180,000 state combinations was optimized by the hierarchical technique under
100 different price conditions. The number of iterations needed ranged from 3
to 6 corresponding to between 6 and 12 iterations of the value iteration method.
If the latter method was used instead, a planning horizon of 20 years would be
realistic (cf. van Arendonk, 1985). Since each state in the model equals 4 weeks,
this horizon represents 260 iterations, which should be compared to the equivalence
of from 6 to 12 when the hierarchical technique was applied.

13.3.5 The numerical example formulated and solved as a hierarchi-
cal Markov process

In order to illustrate the hierarchical technique, we shall formulate the numeri-
cal example (the 36-state model) as a hierarchical Markov process. A Java based
software tool for hierarchical Markov processes has been developed by Kristensen
(2003a)>. The following example is pre-defined and comes with the program.

The three classes of the genetic merit are defined as states in the founder pro-
cess of a hierarchical Markov process. Thus the number of child processes is also
3, and each child process represents a dairy cow of a certain genetic merit. When
a new heifer is purchased, we assume, like before, that the probability distribution
over main states is uniform, so that the probability of entering either one is 1/3. The
maximum age of a cow was assumed to be 4 lactations, and the states of the child
process are defined from the relative level of milk yield. Further a dummy state

The program is available on World Wide Web. A Windows installer file may be downloaded
from URL: http://www.prodstyr.ihh.kvl.dk/software/mlhmp.html
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Table 13.11: Parameters of the hierarchical Markov process: Transition probabil-
ities of founder process and initial state probabilities of child pro-

cesses.
Transition probabilities, founder Initial state probabilities, children
State ¢Ln pl(o)

L k=1 k=2 k=3 i=1 i=2 =3 i=4

1 1/3 173 1/3 1/3 1/3 1/3 0

2 173 173 1/3 1/3 1/3 1/3 0

3 1/3 173 1/3 1/3 1/3 1/3 0

of length, reward and output equal to O is included at each stage of the child pro-
cesses. If the cow is replaced at the end of a stage, the process enters the dummy
state with probability 1 at the next stage, and for the rest of the duration of the
subprocess it will stay in the dummy states. Stage numbers in the child processes
directly correspond to lactation numbers.

Thus, for all child processes, the probability of staying at the same relative level
of milk yield (state in the subprocess) is 0.6, and if the present state is “Average”,
the probability of transition to either “Low” or “High” is 0.2 each. The probability
of transition (if kept) from “Low” or “High” to “Average” is in both cases 0.3,
and from “Low” to “High” and vice versa the probability is 0.1. The initial state
probabilities of the child processes represent the probability of a new heifer being
either “Low”, “Average” or “High” yielding. Thus, all initial state probabilities are
1/3.

Like before, the physical outputs are interpreted as milk yields and the rewards
are defined as the economic net returns. All parameters of the hierarchical model
are shown in Tables 13.12 and 13.11.

We shall determine an optimal solution under the following 3 criteria of opti-
mality:

1. Maximization of total expected discounted rewards, i.e., the objective func-
tion (13.3). In this case the physical outputs of Table 13.12 are ignored, and
a discount factor 3¢(n) = exp(—r), where r is the interest rate, is applied
(for states where the stage length is not zero).

2. Maximization of average rewards over time. In this situation we use the
objective function (13.5) letting the output represent stage length. No dis-
counting is performed in this case.

3. Maximization of average rewards over output defined as in Table 13.12.
Thus the objective function (13.5) is applied, and no discounting is per-
formed.

In Table 13.13, optimal policies under the three criteria are shown. It appears
that the policies under the first two criteria are quite similar, but under the third
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Table 13.12: Parameters of the hierarchical Markov process, child processes.

p,}j (n) pizj (n)
¢ n i =1 =2 =3 =4 ri(n) mi(n) =1 =2 =3 =4 ri(n) mi(n)
1 1 1 06 03 01 00 6,000 3000 00 00 00 1.0 5,000 3,000
1 1 2 02 06 02 00 8000 4000 00 00 00 10 7,000 4,000
1 1 3 01 03 06 00 10,000 5000 00 00 00 1.0 9,000 5,000
1 1 4 00 00 00 1.0 0 0 00 00 00 1.0 0 0
1 2 1 06 03 01 00 8000 4000 00 00 00 10 7,000 4,000
1 2 2 02 06 02 00 10,000 5000 00 00 00 1.0 9,000 5,000
1 2 3 01 03 06 00 12,000 6,000 00 00 00 1.0 11,000 6,000
1 2 4 00 00 00 1.0 0 0 00 00 00 1.0 0 0
1 3 1 06 03 01 00 8000 4000 00 00 00 10 7,000 4,000
1 3 2 02 06 02 00 10,000 5000 00 00 00 1.0 9,000 5,000
1 3 3 01 03 06 00 12,000 6000 00 00 00 1.0 11,000 6,000
1 3 4 00 00 00 1.0 0 0 00 00 00 1.0 0 0
1 4 1 - - - - 6,000 3,500 - - - - 6,000 3,500
1 4 2 - - - - 8,000 4500 - - - - 8,000 4,500
1 4 3 - - - - 10,000 5,500 - - - - 10,000 5,500
1 4 4 - - - - 0 0o - - - - 0 0
2 1 1 06 03 01 00 8000 4000 00 00 00 10 7,000 4,000
2 1 2 02 06 02 00 10,000 5000 00 00 00 1.0 9,000 5,000
2 1 3 01 03 06 00 12,000 6,000 00 00 00 1.0 11,000 6,000
2 1 4 00 00 00 10 0 0 00 00 00 1.0 0 0
2 2 1 06 03 01 00 10,000 5000 00 00 00 1.0 9000 5,000
2 2 2 02 06 02 00 12,000 6,000 00 00 00 1.0 11,000 6,000
2 2 3 01 03 06 00 14,000 7,000 00 00 00 1.0 13,000 7,000
2 2 4 00 00 00 1.0 0 0 00 00 00 1.0 0 0
2 3 1 06 03 01 00 10,000 5000 00 00 00 1.0 9,000 5,000
2 3 2 02 06 02 00 12,000 6,000 00 00 00 1.0 11,000 6,000
2 3 3 01 03 06 00 14,000 7,000 00 00 00 1.0 13,000 7,000
2 3 4 00 00 00 1.0 0 0 00 00 00 1.0 0 0
2 4 1 - - - - 8,000 4500 - - - - 8,000 4,500
2 4 2 - - - - 10,000 5,500 - - - - 10,000 5,500
2 4 3 - - - - 12,000 6,500 - - - - 12,000 6,500
2 4 4 - - - - 0 0o - - - - 0 0
3 1 1 06 03 01 00 10,000 5000 00 00 00 1.0 9,000 5,000
3 1 2 02 06 02 00 12,000 6000 00 00 00 1.0 11,000 6,000
3 1 3 01 03 06 00 14,000 7,000 00 00 00 1.0 13,000 7,000
3 1 4 00 00 00 10 0 0 00 00 00 1.0 0 0
3 2 1 06 03 01 00 12,000 6,000 00 00 00 1.0 11,000 6,000
3 2 2 02 06 02 00 14,000 7,000 00 00 00 1.0 13,000 7,000
3 2 3 01 03 06 00 16,000 8000 00 00 00 1.0 15,000 8,000
3 2 4 00 00 00 10 0 0 00 00 00 1.0 0 0
3 3 1 06 03 01 00 12,000 6000 00 00 00 1.0 11,000 6,000
3 3 2 02 06 02 00 14,000 7,000 00 00 00 1.0 13,000 7,000
3 3 3 01 03 06 00 16,000 8000 00 00 00 1.0 15,000 8,000
3 3 4 00 00 00 10 0 0 00 00 00 1.0 0 0
3 4 1 - - - - 10,000 5,500 - - - - 10,000 5,500
3 4 2 - - - - 12,000 6,500 - - - - 12,000 6.500
3 4 3 - - - - 14,000 7,500 - - - - 14,000 7.500
3 4 4 - 0 0o - - - - 0 0

Legends: ¢ = Child process (Founder
n, 7 = State at Stage n + 1.

State), n = Stage number, ¢ = State at Stage
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Table 13.13: Optimal policies under the three criteria (cl, c2, c3) defined in the
text (actions: 1 = “Keep”, 2 = “Replace”).

State 1 State 2 State 3
Subprocess  Stage c1 Co C3 c1 Co2 C3 Ci C2 C3
1 1 2 2 1 2 2 1 2 1 1
1 2 2 2 1 2 2 1 2 1 1
1 3 2 2 1 2 2 1 2 2 1
2 1 1 1 1 1 1 1 1 1 1
2 2 2 1 1 1 1 1 1 1 1
2 3 2 2 1 2 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1
3 2 1 1 1 1 1 1 1 1 1
3 3 1 1 1 1 1 1 1 1 1

Table 13.14: The performance of the hierarchical technique compared to the pol-
icy and value iteration methods under the three criteria (c1, c2, c3)
defined in the text.

Hierarchical model  Policy iteration Value iteration

C1 C2 C3 C1 Co C3 C1 Co C3

Number of iterations 4 3 2 4 4 2 100 100 100
Computer time, rel. 1 086 043 268 267 139 48 46 11

criterion the optimal policy differs significantly. A more detailed example of the
effect of criterion of optimality was discussed by Kristensen (1991).

In order to compare the efficiency of the hierarchical technique to the tradi-
tional policy and value iteration methods, the problem of the example was trans-
formed to an ordinary Markov decision process and optimized by those methods.
The transformed model has 3 x 4 x 4 = 48 states, which is not larger than the
policy iteration method may be applied without problems. In Table 13.14 some
performance data of the three optimization techniques are compared.

The superiority of the hierarchical technique over the policy iteration method is
due mainly to the time spent on solving the linear simultaneous equations of Step
2. In the hierarchical case a system of 3 equations is solved, whereas 48 equations
are solved under the ordinary policy iteration method.

In this numerical example the performance of the hierarchical technique is even
more superior to the value iteration method than expected from the theoretical con-
siderations of Section 13.3.4. In the present case an iteration of the hierarchical
model is performed even faster than one of the value iteration method applied to
the same (transformed) model. The reason is that the value iteration algorithm has
not been programmed in the most efficient way as defined in Section 13.3.4. On the
contrary, the sum of Eq. (13.6) has been calculated over all 48 states of the trans-
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formed model. Since only 4 transition probabilities from each state are positive,
the sum could be calculated only over these 4 states.

13.4 Uniformity: Bayesian updating

13.4.1 Principles of learning from observations

As discussed earlier, it is obvious that the traits of an animal varies no matter
whether we are considering the milk yield of a dairy cow, the litter size of a sow
or almost any other trait. On the other hand, it is not obvious to what extent the
observed trait Y, at stage n is, for instant, the result of a permanent property of the
animal X7, a permanent damage caused by a previous disease X9 or a temporary
random fluctuation e,,. Most often the observed value is the result of several per-
manent and random effects. With Y,,, X7, X5 and e,, defined as above the relation
might for instance be

Y, =m+ X1 + aXs + en, (13.20)

where m is the expected value for an arbitrarily selected animal under the circum-
stances in question, and @ = —1 if the animal has been suffering from the disease,
and a = 0 otherwise. In this example, X only varies among animals, whereas e,
also varies over time for the same animal. The effect of the damage caused by the
disease X3 is in this example assumed to be constant over time when it has been
“switched on”. The value of X5 is a property of the individual disease case (the
“severity” of the case).

In a replacement decision it is of course important to know whether the ob-
served value is mainly a result of a permanent effect or it is just the result of a
temporary fluctuation. The problem, however, is that only the resulting value Y}, is
observed, whereas the values of X, X5 and e,, are unknown. On the other hand,
as observations of Y7, Y>, ... are done, we are learning something about the value
of the permanent effects. Furthermore, we have got a prior distribution of X7 and
X5, and each time an observation is done, we are able to calculate the posterior
distribution of X; and X5 by means of the Kalman-filter theory in connection with
Dynamic Linear Models (described for instance by West and Harrison, 1997) if we
assume all effects to be normally distributed.

A model as described by Eq. (13.20) fits very well into the structure of a
hierarchical Markov process. Thus we may regard Y,, as a state variable in a child
process, and the permanent effects X; and X5 as state variables of the founder
process. We then face a hierarchical Markov process with unobservable founder
state. Kristensen (1993) discusses this notion in details, and it is shown that under
the assumption of normally distributed effects, we only have to keep the present
expected values of X; and X5, the currently observed value of Y,, and (in this
example) the number of stages since the animal was suffering from the disease (if
it has been suffering from the disease at all). The expectations of X; and X, are
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sufficient to determine the current posterior distribution of the variables, because
the variance is known in advance. Even though the posterior variance decreases as
observations are done, the decrease does not depend on the values of Yi,Ys,. ..,
but only on the number of observations done.

In the study of Kristensen (1993), a more general case involving several traits
each being influenced by several unobservable effects is sketched, and a numerical
example involving only a single trait is given. An example concerning replacement
of sows has been given by Jgrgensen (1992). It was demonstrated in both studies
that the Bayesian approach in some cases may result in state space reduction with-
out loss of information.

In multi-trait updating models a Kalman filter technique based on state space
models may be relevant as described by Kristensen (1994). Recently, Nielsen
et al. (2011) provided general guidelines for embedding state space models into
a Markov decision process.

13.4.2 Applications

The described principles for Bayesian updating have in particular been used in
combination with Dynamic Linear Models (see West and Harrison, 1997, for a de-
tailed description of the concept). In addition to the model by Jgrgensen (1992),
such models with built-in learning capabilities have been developed by Kristensen
and Sgllested (2004a,b) for sow replacement taking all litter size results into ac-
count. Nielsen et al. (2010) presented a dairy cow replacement model where the
milk yield capacity of a cow was updated daily based on data from automatic milk-
ing systems. Lien et al. (2003) developed a model for determination of optimal
length of leys in an area with winter damage problems, where the productivity of
the ley is learned over time as observations are done. Finally, the principles are
used in a slaughter pig marketing model with emphasis on information from online
weighing equipment (Kristensen et al., 2012).

An example of embedding a Dynamic Generalized Linear Model into a Markov
decision process is given by Ge et al. (2010b,a) who used the technique for manag-
ing foot-and-mouth disease epidemics. The number of new cases were described
by a Poisson process, and the properties of the epidemic were updated based on the
observations.

13.5 Herd restraints: Parameter iteration

One of the major difficulties identified in the introduction was herd restraints.
All the replacement models mentioned in the previous sections have been single-
component models, i.e., only one animal is considered at the same time, assuming
an unlimited supply of all resources (heifers or gilts for replacement, feed, labor
etc) and no production quota. In a multi-component model all animals of a herd
are simultaneously considered for replacement. If all animals (components) com-
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pete for the same limited resource or quota, the replacement decision concerning
an animal does not only depend on the state of that particular animal, but also on
the states of the other animals (components) of the herd.

If the only (or at least the most limiting) herd restraint is a limited housing
capacity, the number of animals in production is the scarce resource, and accord-
ingly the relevant criterion of optimality is the maximization of net revenues per
animal as it is expressed in the criteria (13.1), (13.2), (13.3) and (13.4). Thus
the optimal replacement policy of the single component model is optimal for the
multi-component model too.

If the only (or most limiting) herd restraint is a milk quota, the situation is much
more complicated. Since the most limiting restriction is a fixed amount of milk to
produce, the relevant criterion of optimality is now the maximization of average net
revenues per kg milk yield as expressed in criterion (13.5), because a policy that
maximizes net revenues per kg milk will also maximize total net revenues from the
herd which was assumed to be the objective of the farmer.

By following a policy which is optimal according to criterion (13.5) we assure
at any time that the cows which produce milk in the cheapest way are kept. Thus the
problem of selecting which cows to keep in the long run (and the mutual ranking
of cows) is solved, but the problem of determining the optimal number of cows
in production at any time is not solved. If for instance, it is recognized 2 months
before the end of the quota year that the quota is expected to be exceeded by 10
percent, we have to choose whether to reduce the herd size or to keep the cows and
pay the penalty. The problem is that both decisions will influence the possibilities
of meeting the quota of the next year in an optimal way. To solve this short run
quota adjustment problem we need a true multi-component model.

An other example of a herd restraint is a limited supply of heifers. If the
dairy farmer only uses home-grown heifers for replacement, the actions concern-
ing individual cows become inter-dependent, and again a multi-component model
is needed in order to solve the replacement problem. Ben-Ari and Gal (1986)
and later Kristensen (1992) demonstrated that the replacement problem in a dairy
herd with cows and a limited supply of home grown heifers may be formulated
as a Markov decision process involving millions of states. This multi-component
model is based on a usual single-component Markov decision process represent-
ing one cow and its future successors. Even though the hierarchical technique
has made the solution of even very large models possible, such a model is far too
large for optimization in practice. Therefore, the need for an approximate method
emerged, and a method called parameter iteration was introduced by Ben-Ari and
Gal (1986).

The basic idea of the method is to approximate either the present value func-
tion f;(n) (objective function (13.3)) or the relative values f7 (objective functions
(13.4) and (13.5)) by a function G involving a set of parameters a1, ..., Gy, to be
determined in such a way that G(i, a1, ..., am) = fi(n)or G(i,a1,...,an) = f7.
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In the implementation of Ben-Ari and Gal (1986) the parameters were deter-
mined by an iterative technique involving the solution of sets of simultaneous linear
equations generated by simulation.

In a later implementation Kristensen (1992) determined the parameters by or-
dinary least squares regression on a simulated data set. The basic idea of the im-
plementation is to take advantage from the fact that we are able to determine an
optimal solution to the underlying (unrestricted) single-component model. If no
herd restraint was present, the present value of the multi-component model would
equal the sum of the present values of the individual animals determined from the
underlying single-component model. Then it is argued in what way the restraint
will logically reduce the (multi-component) present value, and a functional expres-
sion having the desired properties is chosen. The parameters of the function are
estimated from a simulated data set, and the optimal action for a given (multi-
component) state is determined as the one that maximizes the corrected present
value. (A state in the multi-component model is defined from the states of the
individual animals in the single-component model, and an action defines the re-
placement decision of each individual animal).

Ben-Ari and Gal (1986) compared the economic consequences of the resulting
optimal multi-component policy to a policy defined by dairy farmers, and they
showed that the policy from the parameter iteration method was better. Kris-
tensen (1992) compared the optimal multi-component policies to policies from
usual single-component models in extensive stochastic simulations and showed
that the multi-component policies were superior in situations with shortage of
heifers.

The parameter iteration method has been applied under a limited supply of
heifers. It seems to be realistic to expect, that the method and the basic principles of
Kristensen (1992) may be used under other kinds of herd restraints as for instance
the short time adjustment to a milk quota as mentioned above.

13.6 General discussion

In Section 13.1, the main difficulties concerning animal production models were
identified as variability in traits, cyclic production, uniformity (the traits are diffi-
cult to define and measure) and herd restraints. We are now able to conclude that
the difficulties of variability and the cyclic production are directly solved by the
application of Markov decision programming, but when the variability of several
traits are included we face a problem of dimensionality. The formulation of the
notion of a hierarchical Markov process contributed to the solution of the dimen-
sionality problem, but did not solve it. The upper limit of number of states to be
included has been raised considerably, but not eliminated.

This is for instance clearly illustrated when we formulate multi-component herd
models in order to deal with herd restraints. In that case we still have to use approx-
imate methods to determine an “optimal” replacement policy. On the other hand it
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has been demonstrated by Kristensen (1992) that the parameter iteration method
applied to a multi-component herd model (even though it is only approximate) is
able to improve the total net revenue compared to the application of a usual single-
component (animal) model in a situation with shortage of heifers. The parameter
iteration method is an important contribution to the problem of determining opti-
mal replacement policies under herd restraints.

In other situations with a limiting herd restraint it may be relevant to use an
alternative criterion of optimality maximizing average net revenue per unit of the
limiting factor. This method has been successfully applied in a situation with milk
production under a limiting quota.

Recent results have also contributed to the solution of the uniformity problem.
The Bayesian updating technique described in Section 13.4 has turned out to be a
promising approach, which has been applied to several problems in farm manage-
ment. It might also be a solution to the problem of including animal health as a
trait to be considered. As concerns other traits such as litter size or milk yield the
Bayesian approach may in some cases result in a reduction of the state space with-
out loss of information (Jgrgensen, 1992; Kristensen, 1993). Thus it contributes
indirectly to the solution of the dimensionality problem.

New developments in the area of Markov decision programming for herd man-
agement support includes the notion of multi-level hierarchical models, where ac-
tions are defined at different levels with different time horizons. Thus the method
is able to optimize decisions with different time horizons simultaneously as de-
scribed by Kristensen and Jgrgensen (2000). A good example of this technique is a
model developed by Nielsen et al. (2004) for optimization of decisions concerning
winter feeding level, summer grazing strategy, start of fattening and slaughtering
of organic steers. An other example is the dairy cow replacement model by Bar
et al. (2008b,a) who studied the effects of diseases using multi-level hierarchical
models.

Also the development of a standard tool (the Java based MLHMP software
Kristensen, 2003a) for (multi-level hierarchical) Markov decision processes is con-
sidered to be promising for construction of decision support models in the future.



262 13.6 General discussion




Bibliography

Abramowitz, M., Stegun, 1., 1964. Handbook of Mathematical Functions. Applied
Mathematics Series, vol. 55. National Bureau of Standards, Washington.

Anderson, D., Weeks, D., 1989. Cattle liveweight sampled on a continuous versus
intermittent basis. Livestock Production Science 23, 117-135.

Anonymous, 1993. Modern Heuristic techniques for combinatorial problems. Hal-
sted Press.

Arnold, R. N., Bennet, G. L., 1991. Evaluation of four simulation models of cattle
growth and body composition: Part i - comparison and characterization of the
models. Agricultural Systems 35, 401-432.

Bangsg, O., 2004. Object oriented bayesian networks. Ph.D. thesis, Department of
Computer Science, Aalborg University, Aalborg.

Bar, D., Tauer, L., Bennett, G., Gonzélez, R., Hertl, J., Schulte, H., Schukken,
Y., Welcome, F., Grohn, Y., 2008a. Use of a dynamic programming model
to estimate the value of clinical mastitis treatment and prevention options
utilized by dairy producers. Agricultural Systems 99 (1), 6 — 12. DOL
10.1016/j.agsy.2008.09.001

Bar, D., Tauer, L. W., Bennett, G., Gonzalez, R. N., Hertl, J. A., Schukken, Y. H.,
Schulte, H. F., Welcome, F. L., Grohn, Y. T., 2008b. The cost of generic clinical
mastitis in dairy cows as estimated by using dynamic programming. J. Dairy Sci.
91 (6), 2205-2214. DOI: 10.3168/jds.2007-0573

Barnard, G., 1959. Control charts and stochastic processes. Journal of the Royal
Statistical Society 21.

Bellman, R. E., 1957. Dynamic Programming. Princeton University Press, Prince-
ton.

Bellman, R. E., 1961. Adaptive control processes: A guided tour. Princeton Uni-
versity Press, Princeton.

Bellman, R. E., Dreyfus, S. E., 1962. Applied dynamic programming. Princeton
University Press, Princeton.



302 BIBLIOGRAPHY

Bellman, R. E., Kalaba, R., 1965. Dynamic programming and modern control the-
ory. Academic Press, New York.

Ben-Ari, Y., Amir, 1., Sharar, S., 1983. Operational replacement decision model
for dairy herds. Journal of Dairy Science 66, 1747-1759.

Ben-Ari, Y., Gal, S., 1986. Optimal replacement policy for multicomponent sys-
tems: An application to a dairy herd. European Journal of Operational Research
23,213-221.

Besag, J., Green, P., Higdon, D., Mengersen, K., 1995. Bayesian computation and
stochastic systems. Statistical Science 10, 3-66.

Bielza, C., Miiller, P., Rios Insua, D., 1999. Decision analysis by augmented prob-
ability simulation. Management Science 45, 995-1007.

Black, J. L., 1995. The evolution of animal growth models modelling energy
metabolism in the pig - critical evaluation of a simple reference model. In:
Moughan, P. J., Verstegen, M. W. A., Visserreyneveld, M. 1. (Eds.), Modelling
Growth in the Pig. Vol. 78 of Eaap Publication. Wageningen Peers, Wageningen.

Brandl, N, Jgrgensen, E., 1996. Determination of live weight in pigs from dimen-
sions by image analysis. Computers and Electronics in Agriculture 15, 57-72.

Bressers, H., te Brake, J., Jansen, M., Nijenhuis, P., Noordhuizen, J., 1994.
Monitoring individual sows - radiotelemetrically recorded ear base temperature
changes around farrowing. Livestock Production Science 37, 353-361.

Bressers, H., te Brake, J., Noordhuizen, J., 1991. Oestrus detection in group-housed
sows by analysis of data on visits to the boar. Applied Animal Behaviour Science
31, 183-189.

Broekmans, J. E., 1992. Influence of price fluctuations on delivery strategies for
slaughter pigs. Dina Notat 7, 1-28.

Buntine, W. L., 1994. Operations for learning with graphical models. Journal of
Artificial Intelligence Research 2, 159-225.

Chang, W., Streeter, D., Jones, L., 1994. An object-oriented model for simulating
milking parlor operations. Journal of Dairy Science 77, 84-93.

Charnes, J. M., Shenoy, P. P,, 1996. A forward monte carlo method for solving
influence diagrams using local computation (abstract). In: Proceedings of the
First European Conference on Highly Structured Stochastic Systems. 19.-24.
may 1996. Rebild, Denmark.

Chib, S., Greenberg, E., 1995. Understanding the metropolis-hastings algorithm.
American Statistician 49, 327-335.



BIBLIOGRAPHY 303

Clausen, S., 1969. Kybernetik - Systemer og Modeller. Institute of Mathematical
Statistics and Operations Research. The Technical University of Denmark.

Cooper, W. W., Seiford, L. M., Tone, K., 2007. Data Envelopment Analysis. A
comprehensive text with models, applications, references and DEA-solver soft-
ware, 2nd Edition. Kluwer Academic Publishers.

Cornou, C., 2006. Automated oestrus detection methods in group housed sows:
Review of the current methods and perspectives for development. Livestock Sci-
ence 105, 1-11.

Cornou, C., Heiskanen, T., 2007. Automated oestrus detection method for group
housed sows using acceleration measurements. In: ECPLF 2007. Proceedings of
the 3rd European Conference on Precision Livestock Farming. Skiathos, Greece,
pp. 211-217.

Cornou, C., Lundbye-Christensen, S., 2008. Classifying sows’ activity types from
acceleration patterns. an applicaqtion of the multi-process kalman filter. Applied
Animal Behaviour Science 111, 262-273.

Cornou, C., Lundbye-Christensen, S., 2010. Classification of sows’ activ-
ity types from acceleration patterns using univariate and multivariate mod-
els. Computers and Electronics in Agriculture 72 (2), 53 — 60. DOI:
10.1016/j.compag.2010.01.006

Cornou, C., Vinther, J., Kristensen, A. R., 2008. Automatic detection of oestrus
and health disorders using data from electronic sow feeders. Livestock Science
118, 262-271.

Cowell, R. G., Dawid, A. P,, Lauritzen, S. L., Spiegelhalter, D. J., 1999. Probabilis-
tic Networks and Expert Systems. Statistics for Engineering and Information
Science. Springer-verlag, New York, Berlin, Heidelberg.

Danfer, A., 1990. A dynamic model of nutrient digestion and metabolism in lactat-
ing dairy cows. Beretning fra Statens Husdyrbrugsforsggs 671, National Institute
of Animal Science.

de Mol, R., Keen, A., Kroeze, G., 1999. Description of a detection model for
oestrus and diseases in dairy cattle based on time series analysis with a kalman
filter. Computers and Electronics in Agriculture 22, 171-185.

de Roo, G., 1987. A stochastic model to study breeding schemes in a small pig
population. Agricultural Systems 25, 1-25.

de Vries, A., 2001. Statistical process control charts applied to dairy herd repro-
duction. Ph.D. thesis, University of Minnesota.



304 BIBLIOGRAPHY

de Vries, A., Conlin, B. J., 2003. Design and performance of statistical process
control charts applied to estrus detection efficiency. Journal of Dairy Science 86,
1970-1984.

de Vries, A., Conlin, B. J., 2005. A comparison of the performance of statistical
quality control charts in a dairy production system through stochastic simulation.
Agricultural Systems 82, 317-341.

de Vries, A., Reneau, J. K., 2010. Application of statistical process control charts
to monitor changes in animal production systems. Journal of Animal Science 88,
E11-24. DOI: 10.2527/jas.2009-2622

de Vries, A., van Leeuwen, J., Thatcher, W. W., 2004. Economic importance of
improved reproductive performance. In: Proceedings 2004 Florida Dairy Re-
production Road Show. Okeechobee, Ocala and Chipley, Florida, pp. 33-43.

DeGroot, M. H., 1970. Optimal statistical decisions. McGraw-Hill, Inc,, New York.

DeLorenzo, M. A., Spreen, T. H., Bryan, G. R., Beede, D. K., van Arendonk, J.
A. M., 1992. Optimizing model: insemination, replacement, seasonal variation,
and cash flow. Journal of Dairy Science 75, 885-896.

Dempster, A., Laird, N., Rubin, D., 1977. Maximum likelihood from incomplete
data via the em algorithm (with discussion). Journal of The Royal Statistical
Society: Series B (Statistical Methodology) 39, 1-38.

Dent, J., Anderson, J., 1971. System analysis in agricultural management. Wiley.

Dent, J. B., Harrison, S. R., Woodford, K. B., 1986. Farm planning with linear
programming: Concept and Practice. Butterworths, Sydney.

Dijkhuizen, A., Krabbenborg, R., Huirne, R., 1989. Sow replacement: A compar-
ison of farmer’s actual decisions and model recommendations. Livestock Pro-
duction Science 23, 207-218.

Dindorph, U., 1992. Agricultural applications of knowledge based system concepts
- exemplified by a prototype on weed control in organic farming. WEEDOF.
Ph.D. thesis, Tidsskrift for planteavls Sprecialserie Beretning nr S 2201.

Déry, R., Landry, M., Banville, C., 1993. Revisiting the issue of model validation
in or: An epistemological view. European Journal of Operations Research 66,
168-183.

Durbin, J., Koopman, S. J., 2001. Time series analysis by state space methods.
Oxford Statistical Science Series. Oxford University Press, Oxford.

Enevoldsen, C., Sorensen, J. T., Thysen, L., Guard, C., Grohn, Y. T., 1995. A di-
agnostic and prognostic tool for epidemiologic and economic analyses of dairy
herd health management. Journal of Dairy Science 78 (4), 947-961.



BIBLIOGRAPHY 305

Finlayson, J., Cacho, O., Bywater, A. C., 1995. A simulation model of grazing
sheep: I. animal growth and intake. Agricultural Systems 48, 1-25.

Firk, R., Stamer, E., Junge, W., Krieter, J., 2002. Automation of oestrus detection
in dairy cows: a review. Livestock Production Science 75 (219-232).

Ge, L., Kristensen, A. R., Mourits, M. C., Huirne, R. B., 2010a. A new decision
support framework for managing foot-and-mouth disease epidemics. Annals of
Operations Research Online First, ?7-?? DOI: 10.1007/s10479-010-0774-2

Ge, L., Mourits, M. C., Kristensen, A. R., Huirne, R. B., 2010b. A mod-
elling approach to support dynamic decision-making in the control of fmd
epidemics. Preventive Veterinary Medicine 95 (3-4), 167 - 174. DOL
10.1016/j.prevetmed.2010.04.003

Giaever, H. B., 1966. Optimal dairy cow replacement policies. Ph.D. thesis, Uni-
versity of California, Berkeley, University Microfilms, Ann Arbor, Michigan.

Gilks, W., 1992. Derivative-free adaptive rejection sampling for gibbs sampling.
In: Bernardo, J., Berger, J., Dawid, A., Smith, A. (Eds.), Bayesian Statistics 4.
Oxford University Press, pp. 641-649.

Gilks, W., Thomas, A., Spiegelhalter, D. J., 1993. A language and program for
complex bayesian modelling. The Statistician 43, 169—-178.

Gilks, W., Wild, P., 1992. Adaptive rejection sampling for gibbs sampling. Applied
Statistics 41(2), 337-348.

Gonzales-Alcorta, M. J., Dorfman, J. H., Pesti, G. M., 1994. Maximizing profit
in broiler production as price change: A simple approximation with practical
value. Agribusiness 10 (5), 389-399.

Goodall, E. A., Sprevak, D., 1985. A bayesian estimation of the lactation curve of
a dairy cow. Animal Production 40, 189-193.

Greve, J., 1995. The dynamic ranking approach and its application to piglet pro-
duction. Dina research report, 35, Faculty of Technology and science. Aalborg
University., Aalborg.

Hadley, G., 1964. Nonlinear and dynamic programming. Vol. Reading, Mas-
sachusetts. Addison-Wesley.

Hansen, A. E., 1992. Styret vaekst hos slagtesvin ved ad libitum fodring. Master
thesis, Department of Animal Science and Animal Health, The Royal Veterinary
and Agricultural University, Kgbenhavn.

Hansen, M. S., 2006. Optimization of delivery strategies for slaughter pigs. Mas-
ter’s thesis, Department of Large Animal Sciences, The Royal Veterinary and
Agricultural University.



306 BIBLIOGRAPHY

Haran, P., 1997. Markov decision processes in the optimisation of culling decisions
for irish dairy herds. Master’s thesis, School of Computer Applications, Dublin
City University.

Hardie, A., 1996. Strategic modelling in dairy production. Ph.D. thesis, Depart-
ment of Mathematical Statistics and Operational Research, University of Exeter.

Hayes-Roth, F., Waterman, D. A., Lenat, D. B., 1996. Building Expert Systems.
Addison-wesley.

Henry, G. M., DeLorenzo, M. A., Beede, D. K., van Horn, H. H., Moss, C. B.,
Boggess, W. G., 1995. Determining the optimal nutrient management strategies
for dairy farms. Journal of Dairy Science 78, 693-703.

Hillier, F. S., Lieberman, G. J., 1996. Introduction to Operations Research, 3rd
Edition. Holden-Day Inc., San Francisco.

Hoel, P, Port, S., Stone, C., 1972. Introduction to Stochastic Processes. Waveland
Press, Inc., Illinois.

Houben, E., Huirne, R. B. M., Dijkhuizen, A. A., Schreinemakers, J. F., 1995.
Genetic algorithm to link decisions at animal and herd level on dairy farms.
In: Houben, E. H. P. (Ed.), Economic optimization of decisions with respect to
dairy cow health management. Department of Farm Management, Wageningen
Agricultural University, pp. 101-121.

Houben, E. H. P, Huirne, R. B. M., Dijkhuizen, A. A., Kristensen, A. R., 1994. Op-
timal replacement of mastitis cows determined by a hierarchic markov process.
Journal of Dairy Science 77, 2975-2993.

Howard, R., 1960. Dynamic Programming and Markov Processes. The M.LT.
Press, Cambridge, Massachusetts.

Howard, R. A., 1971. Dynamic probabilistic systems. Volume II: Semi-Markov
and decision processes. John Wiley & Sons, Inc., New York.

Howard, R. A., Matheson, J. E., 1981. Influence diagrams. In: Howard, R. A.,
Matheson, J. E. (Eds.), Readings on the Principles and Applications of Decision
Analysis. Strategic Decisions Group, Menlo Park, California, pp. 719-762.

Huirne, R., 1990. Computerized Management Support for Swine Breeding Farms.
Ph.D. thesis. Department of Farm Management, Agriculturel University ,
P.O.box 338,6700 AH Wageningen. The Netherlands, Wageningen.

Huirne, R., Dijkhuizen, A., Renkema, J. A., 1991. Economic optimization of sow
replacement decisions on the personal computer by method of stochastic dy-
namic programming. Livestock Production Science 28, 331-347.



BIBLIOGRAPHY 307

Huirne, R., Hendriks, T., Dijkhuizen, A., Giesen, G., 1988. The economic op-
timisation of sow replacement decisions by stochastic dynamic programming.
Journal of Agricultural Economics 39, 426—438.

Huirne, R., van Beek, P., Hendriks, T., Dijkhuizen, A., 1993. An application of
stochastic dynamic programming to support sow replacement decisions. Euro-
pean Journal of Operational Research 67, 161-171.

Ingber, A., 1993. Simulated annealing: Practice versus theory. J. Mathl. Comput.
Modelling. 18 (11), 29-57.

Jalvingh, A. W., Dijkhuizen, A. A., van Arendonk, J. A. M., Brascamp, E. W.,
1992a. Dynamic probabilistic modelling of reproductive and replacement in sow
herds. general aspects and model description. Agricultural Systems 39, 133—-152.

Jalvingh, A. W., Dijkhuizen, A. A., van Arendonk, J. A. M., Brascamp, E. W.,
1992b. An economic comparison of management strategies on reproduction and
replacement in sow herds using a dynamic probabilistic model. Livestock Pro-
duction Science 32, 331-350.

Jenkins, K. B., Halter, A. N., 1963. A multistage stochastic decision model: Ap-
plication to replacement of dairy cows. Technical Bulletin 67, Agricultural Ex-
perimental Station, Oregon State University.

Jensen, A. L., 1995. A probabilistic model based decision support system for
mildew management in winter wheat. Dina research report 39, University of
Aalborg.

Jensen, F., Jensen, F. V., Dittmer, S. L., 1994. From influence diagrams to junction
trees. In: de Mantaras, R. L., Poole, D. (Eds.), Proceedings of the 10th Con-
ference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers,
San Francisco, CA, pp. 367-373.

Jensen, F. V., 1996. An Introduction to Bayesian Networks. UCL Press, London.

Jensen, F. V., 2001. Bayesian Networks and Decision Graphs. Statistics for Engi-
neering and Information Science. Springer-Verlag, New York.

Jewell, W., 1963. Markov renewal programming i and ii. Operations Research 11,
938-971.

Johnson, N., Leone, F., 1974. Statistics and Experimental Design, Second Edition,
Volume 1. John Wiley & Sons, Inc.

Johnston, J., 1965. Dynamic programming and the theory of the firm. Journal of
Agricultural Economics 16, 532-543.



308 BIBLIOGRAPHY

Jgrgensen, E., 1992. Sow replacement: Reduction of state space in dynamic pro-
gramming models and evaluation of benefit from using the model. Dina Re-
search Report 6.

Jgrgensen, E., August 1993. The influence of weighing precision on delivery de-
cisions in slaughter pig production. Acta Agriculture Scandinavica, Section A
43 (3), 181-189.

Jorgensen, E., 1985. Principper bag produktionskontrol i sohold. Phd thesis, De-
partment of Animal Science, The Royal Veterinary and Agricultural University,
Copenhagen, in Danish.

Jgrgensen, E., 1991. Probabilistic growth model for pigs. paper presented at dina-
workshop 1991. ebeltoft 3-4 december. dupl.

Jgrgensen, E., 1992. Sow replacement: Reduction of state space in dynamic pro-
gramming model and evaluation of benefit from using the model. Dina Research
Report 6, -21.

Jgrgensen, E., 1993. The influence of weighing precision on delivery decisions in
slaughter pig production. Acta Agriculturae Scandinavica Section A - Animal
Science 43, 181-1809.

Jgrgensen, E., Kristensen, A. R., 1995. An object oriented simulation model of a
pig herd with emphasis on information flow. In: FACTS 95 March 7, §, 9. Farm
Animal Computer Technologies Conference. Orlando, Florida, pp. 206-215.

Kaelbling, L. P., Littman, M. L., Cassandra, A. R., 1998. Planning and acting in
partially observable stochastic domains. Artificial Intelligence 101 (1-2), 99—
134.

Kalman, R., 1960. A new approach to linear filtering and prediction problems.
Journal of Basic Engineering 82.

Kass, R., Raftery, A., 1995. Bayes factors. J. Amer. Statist. Assn. 90 (430), 773—
795.

Kennedy, J. O. S., 1986. Dynamic Programming Applications to Agriculture and
Natural Resources. Elsevier Applied Science Publishers, London and New York.

Killen, L., Kearney, B., 1978. Optimal dairy cow replacement policy. Irish Journal
of Agricultural Economics and Rural Sociology 7, 33—40.

Kjerulff, U., 1995. dhugin: A computational system for dynamic time-sliced
bayesian networks. International Journal of Forecasting 11, 89—-111.

Korsgaard, 1. R., Lgvendahl, P., Sloth, K. H., 2005. Monitoring daily measure-
ments of somatic cell count: Automatic and on-line detection of mastitis. In:



BIBLIOGRAPHY 309

Hogeveen, H. (Ed.), Mastitis in Dairy Production: Current knowledge and fu-
ture solutions. Wageningen Academic Publishers, pp. 611-616.

Kristensen, A. R., 1987. Optimal replacement and ranking of dairy cows deter-
mined by a hierarchic markov process. Livestock Production Science 16, 131-
144.

Kristensen, A. R., 1988. Hierarchic markov processes and their applications in
replacement models. European Journal of Operational Research 35, 207-215.

Kristensen, A. R., 1989. Optimal replacement and ranking of dairy cows under
milk quotas. Acta Agricultur® Scandinavica 39, 311-318.

Kristensen, A. R., 1991. Maximization of net revenue per unit of physical output
in markov decision processes. European Review of Agricultural Economics 18,
231-244.

Kristensen, A. R., 1992. Optimal replacement in the dairy herd: A multi-
component system. Agricultural Systems 39, 1-24.

Kristensen, A. R., 1993. Bayesian updating in hierarchic markov processes ap-
plied to the animal replacement problem. European Review of Agricultural Eco-
nomics 20, 223-239.

Kristensen, A. R., 1994. A survey of markov decision programming techniques
applied to the animal replacement problem. European Review of Agricultural
Economics 21, 73-93.

Kristensen, A. R., 2003a. A general software system for markov decision processes
in herd management applications. Computers and Electronics in Agriculture 38,
199-215.

Kristensen, A. R., 2003b. Information from on-line live weight assessment for op-
timal selection of slaughter pigs for market. In: Harnos, H., Herdon, M., Wi-
wczaroski, T. B. (Eds.), Proceedings EFITA 2003 conference. European Federa-
tion for Information Technology in Agriculture, Food and Environment, Debre-
cen, Hungary.

Kristensen, A. R., Jgrgensen, E., 2000. Multi-level hierarchic markov processes as
a framework for herd management support. Annals of Operations Research. 94,
69-89.

Kristensen, A. R., Nielsen, L., Nielsen, M. S., 2012. Optimal slaughter pig mar-
keting with emphasis on information from on-line live weight assessment. Live-
stock Science 145 (1-3), 95 — 108. 10.1016/j.1ivsci.2012.01.003

Kristensen, A. R., Pedersen, C. V., 2003. Representation of uncertainty in a monte
carlo simulation model of a scanvenging chicken production system. In: EFITA



310 BIBLIOGRAPHY

2003. Fourth European Conference of the European Federation for Information
Technology in Agriculture, Food and the Environment. Debrecen, Hungary, pp.
451-459.

Kristensen, A. R., Sgllested, T. A., 2004a. A sow replacement model using
bayesian updating in a 3-level hierarchic markov process. i. biological model.
Livestock Production Science 87, 13-24.

Kristensen, A. R., Sgllested, T. A., 2004b. A sow replacement model using
bayesian updating in a 3-level hierarchic markov process. ii. optimization model.
Livestock Production Science 87, 25-36.

Kristensen, A. R., @stergaard, V., 1982. Optimalt udskiftningstidspunkt for
malkekoen fastlagt ved en stokastisk model. Beretning fra Statens Husdyrbrugs-
forsgg 533, National Institute of Animal Science.

Kristensen, A. R., Thysen, 1., 1991. Economic value of culling information in the
presence and absence of a milk quota. Acta Agriculture Scandinavica 41, 129-
135.

Kure, H., 1997. Marketing management support in slaughter pig production. Ph.D.
thesis, The Royal Veterinary and Agricultural University.

Lauritzen, S. L., 1995. Probabilistic expert systems. Tech. Rep. R-95-2013, Aal-
borg University. Insititute for Electronic Systems. Department of Mathematics
and Computer Science., Aalborg.

Lauritzen, S. L., Nilsson, D., 2001. Limids of decision problems. Management
Science 47, 1235-1251.

Lauritzen, S. L., Spiegelhalter, D. J., 1988. Local computations with probabilities
on graphical structures and their application to expert system (with discussion).
Journal of the Royal Statististical Society B 50, 157-224.

Lien, G., Kristensen, A. R., Hegrenes, A., Hardaker, J. B., 2003. Optimal length
of leys in an area with winter damage problems. Grass and Forage Science 58,
168-177.

Liu, J., 1996. Metropolized independent sampling with comparisons to rejection
sampling and importance sampling. Statistics and Computing 6, 113-119.

Lovejoy, W. S., 1991. A survey of algorithmic methods for partially observed
markov decision processes. Annals of Operations Research 28 (1-4), 47-66.

Lucas, J., 1976. The design and use of cumulative sumquality control schemes.
Journal of Quality Technology 8.

Madsen, T. N., 2001. Tools for monitoring growing pigs. Ph.D. thesis, The Royal
Veterinary and Agricultural University.



BIBLIOGRAPHY 311

Madsen, T. N., Andersen, S., Kristensen, A. R., 2005. Modelling the drinking
patterns of young pigs using a state space model. Computers and Electronics in
Agriculture 48, 39-62.

Madsen, T. N., Kristensen, A. R., 2005. A model for monitoring the condition of
young pigs by their drinking behaviour. Computers and Electronics in Agricul-
ture 48, 138-154.

Madsen, T. N., Ruby, V., 2000. An application for early detection of growth rate
changes in the slaughter pig production unit. Computers and Electronics in Agri-
culture 25, 261-270.

Makulska, J., Kristensen, A. R., 1999. Economic optimization of bull fattening.
In: Perspectives of Modern Information and Communication Systems in Agri-
culture, Food Production and Environmental Control. European Federation for
Information Technology in Agriculture, Food and the Environment, pp. 443—
449,

Marchant, J. A., Schofield, C. P., Jun. 1993. Extending the snake image processing
algorithm for outlining pigs in scenes. Computers and Electronics in Agriculture
8 (4),261-275.

Mayer, D., Belward, J., Burrage, K., 1996. Use of advanced techniques to optimize
a multi-dimensional dairy model. Agricultural Systems 50, 239-253.

McAinsh, C. V., Kristensen, A. R., 2004. Dynamic modelling of a traditional
african chicken production system. Tropical Animal Health and Production 36,
609-626.

McArthur, A. T. G., 1973. Application of dynamic programming to the culling
decision in dairy cattle. Proceedings of the New Zealand Society of Animal Pro-
duction 33, 141-147.

McCullough, D. A., DeLorenzo, M. A., 1996a. Effects of price and management
level on optimal replacement and insemination decisions. Journal of Dairy Sci-
ence 79, 242-253.

McCullough, D. A., DeLorenzo, M. A., 1996b. Evaluation of a stochastic dynamic
replacement and insemination model for dairy cattle. Journal of Dairy Science
79, 50-61.

McKendrick, 1. J., Gettinby, G., Gu, Y., Reid, S. W. J., Revie, C. W., 2000. Using a
bayesian belief network to aid differential diagnosis of tropical bovine diseases.
Preventive Veterinary Medicine 47, 141-156.

Montgomery, D. C., 2005. Introduction to statistical quality control, 5th Edition.
John Wiley & Sons, Inc.



312 BIBLIOGRAPHY

Morris, C., Normand, S., 1992. Hierarchical models for combining information
and for meta-analysis. In: Bernardo, J., Berger, J., Dawid, A., Smith, A. (Eds.),
Bayesian Statistics 4. Oxford University Press, pp. 321-344.

Mourits, M. C. M., Huirne, R. B. M., Dijkhuizen, A. A., Kristensen, A. R., Galli-
gan, D. T., 1999. Economic optimization of dairy heifer management decisions.
Agricultural Systems 61, 17-31.

Nash, D. L., Rogers, G. W., 1995. Herd sire portfolio selection: A comparison of
rounded linear and integer programming. Journal of Dairy Science 78, 2486—
2495.

Nielsen, B. K., Kristensen, A. R., Thamsborg, S. M., 2004. Optimal decisions
in organic steer production - a model including winter feeding level, grazing
strategy and slaughtering policy. Livestock Production Science 88, 239-250.

Nielsen, L. R., Jgrgensen, E., Hgjsgaard, S., 2011. Embedding a state space model
into a markov decision process. Annals of Operations Research 190, 289-309.
DOI: 10.1007/s10479-010-0688-z

Nielsen, L. R., Jgrgensen, E., Kristensen, A. R., @stergaard, S., 2010. Optimal
replacement policies for dairy cows based on daily yield measurements. Journal
of Dairy Science 93 (1), 75 — 92. DOI: 10.3168/jds.2009-2209

Norberg, E., Korsgaard, I. R., Sloth, K. H. M. N., Lgvendahl, P., 2008. Time-series
models on somatic cell score improve detection of mastitis. Acta Agriculturae
Scandinavica, Section A - Animal Sciences 58, 165-169.

Dstergaard, S., Chagunda, M., Friggens, N., Bennedsgaard, T., Klaas, 1., 2005. A
stochastic model simulating pathogen-specific mastitis control in a dairy herd.
Journal of Dairy Science 88, 4243—-4257.

Ostergaard, S., Sgrensen, J. T., Hindhede, J., Houe, H., 2004. Control strategies
against milk fever in dairy herds evaluated by stochastic simulation. Livestock
Production Science 86, 209-223.

Ostergaard, S., Sgrensen, J. T., Kristensen, A. R., 2000. A stochastic model sim-
ulating the feeding-health-production complex in a dairy herd. Journal of Dairy
Science 83, 721-733.

Ostersen, T., Cornou, C., Kristensen, A., 2010. Detecting oestrus by monitoring
sows’ visits to a boar. Computers and Electronics in Agriculture 74, 51 — 58.
DOI: 10.1016/j.compag.2010.06.003

Otto, L., Kristensen, C. S., 2004. A biological network describing infection with
mycoplasma hyopneumoniae in swine herds. Preventive Veterinary Medicine
66, 141-161.



BIBLIOGRAPHY 313

Page, E., 1954. Continuous inspection schemes. Biometrika 41, 100-114.

Pearl, J., 1988. Probabilistic reasoning in intelligent systems. Morgan Kaufman
Publishers, San Mateo.

Pedersen, B., Ruby, V., Jgrgensen, E., 1995. Organisation and application of re-
search and development in commercial pig herds: The Danish approach. In:
Hennesy, D., Cranwell, P. (Eds.), Manipulating Pig Production V. Proceedings
of the Fifth Biennial Conference of the Australasien Pig Science Association
(APSA). Canberra, November 26 to 29, 1995.

Pedersen, C., 1996. Kan det betale sig at analysere grovfoder. [is there a pay-off
from roughage analysis], student report in the course “Advanced Herd Manage-
ment”.

Pettigrew, J., Cornelius, S., Eidman, S., Moser, R., 1986. Integration of factors
affecting sow efficiency: A modelling approach. Journal of Animal Science 63,
1314-1321.

Press, W. H., Flannery, B. R., Teukolsky, S. A., Vetterling, W. T., 1989. Numerical
Recipes in Pascal. The art of scientific computing. Cambridge University Press,
Cambridge.

Puterman, M. L., 1994. Markov Decision Processes: discrete stochastic dynamic
programming. Wiley - Interscience.

Rae, A. N., 1994. Agricultural Management Economics - Activity Analysis and
Decision Making. CAB International.

Raftery, A., Givens, G., Zeh, J., 1995. Inference from a deterministic population
dynamics model for bowhead whales. Journal of the American Statistical Asso-
ciation. 90 (430), 402-430.

Ramaekers, P., Huiskes, J., Verstegen, M., den Hartog, L., Vesseur, P., Swinkels,
J., 1995. Estimating individual body weights of group-housed growing-finishing
pigs using a forelegs weighing system. Computers and Electronics in Agriculture
13, 1-12.

Reenberg, H., 1979. Udskiftning af malkekger. En stokastisk udskiftningsmodel.
Memorandum 6, Jordbrugsgkonomisk Institut.

Reeves, C. (Ed.), 1995. Modern heuristic techniques for combinatorial problems.
McGraw-Hill, London.

Ross, S. M., 1970. Applied probability models with optimization applications.
Holden-Day, San Francisco, California.



314 BIBLIOGRAPHY

Rubinstein, R., Shapiro, A., 1993. Discrete Event Systems. Sensitivity analysis
and stochastic optimisation by the score function method. John Wiley & Sons,
Chichester.

Sargent, R. G., 1998. Verification and validation of simulation models. In:
Medeiros, D. J., Watson, J. S., Carson, J. S., Manivannan, M. S. (Eds.), Proceed-
ings of the 1998 winter simulation conference. Washington DC, pp. 121-130.

Scholten, H., Udink ten Cate, A., Eradus, W., Geurts, P., Glas, C., Miedema, R.,
1995. Optimization of a fuzzy inference system for estrus detection in cattle. In:
Udink ten Cate, A., Martin-Clouaire, R., Dijkhuizen, A., Lokhorst, C. (Eds.),
2nd IFAC/IFIP/EurAgEng Workshop on Al in Agriculture, Wageningen, May
29-31 1995. Wageningen, pp. 103-108.

Settimi, R., Smith, J. Q., 2000. A comparison of approximate bayesian forecasting
methods for non-gaussian time series. Journal of Forecasting 19, 135-148.

Shachter, R. D., 1986. Evaluating influence diagrams. Operations Research 34,
871-882.

Shachter, R. D., Kenley, C., 1989. Gaussian influence diagrams. Management Sci-
ence 35, 527-550.

Shenoy, P. P., 1992. Valuation-based systems for bayesian decision analysis. Oper-
ations Research 40, 463—484.

Singh, D., 1986. Simulation of swine herd population dynamics. Agricultural Sys-
tems 22, 157-183.

Skidmore, A. L., Beverly, R. W., 1995. Utilizing object-oriented analysis, design,
and programming techniques to develop a dairy herd simulation program. In:
FACTS 95 March 7, 8, 9. Farm Animal Computer Technologies Conference.
Orlando, Florida, pp. 190-195.

Slader, R., Gregory, A., 1988. An automatic feeding and weighing system for ad
libitum fed pigs. Computers and Electronics in Agriculture 3, 157-170.

Sgllested, T. A., 2001. Automatic oestrus detection by modelling eating behaviour
of group-housed sows in electronic sow feeding systems. Master’s thesis, Royal
Veterinary and Agricultural University.

Smith, B. J., 1971. The dairy cow replacement problem. An application of dy-
namic programming. Bulletin 745, Florida Agricultural Experiment Station,
Gainesville, Florida.

Spiegelhalter, D., Thomas, A., Best, N., Gilks, W., 1996. BUGS. Bayesian Infer-
ence Using Gibbs Sampling. Version 0.5 (version ii). MRC Biostatistics Unit.



BIBLIOGRAPHY 315

Sgrensen, J., 1990. Validation of livestock herd simulation models: a review. Live-
stock Production Science 26, 79-90.

Se¢rensen, J. T., Kristensen, E. S., Thysen, 1., 1992. A stochastic model simulating
the dairy herd on a pc. Agricultural Systems 39, 177-200.

Stewart, H. M., Burnside, E. B., Pfeiffer, W. C., 1978. Optimal culling strategies
for dairy cows of different breeds. Journal of Dairy Science 61, 1605-1615.

Stewart, H. M., Burnside, E. B., Wilton, J. W., Pfeiffer, W. C., 1977. A dynamic
programming approach to culling decisions in commercial dairy herds. Journal
of Dairy Science 60, 602-617.

Strang, G., King, J., 1970. Litter productivity in large white pigs. Animal Produc-
tion 12, 235-243.

Sundgren, P.-E., van Male, J., Aumaitre, A., Kalm, E., Nielsen, H., 1979. Sow and
litter recording procedures. report of a working party of the eaap commision on
pig production. Livestock Production Science 7, 393-401.

Tatman, J. A., Shachter, R. D., 1990. Dynamic programming and influence dia-
grams. IEEE Transactions on Systems, Man, and Cybernetics 20, 365-379.

Tess, M. W., Bennett, G. L., Dickerson, G. E., 1983. Simulation of genetic changes
in life cycle efficiency of pork production. i. a bioeconomic model. Journal of
Animal Science 56, 336-353.

Thompson, P., Pulvermacher, R., Timms, L., 1995. Pedometer use for estrus de-
tection. In: Proc. Animal Behavior and the Design of Livestock and Poultry
Systems. International Conference. Indianapolis, Indiana, april 19-21. 1995. pp.
230-243.

Thysen, 1., 1993a. Monitoring bulk tank somatic cell counts by a multi-process
kalman filter. Acta Agriculture Scandinavica, Section A, Animal Science 43,
58-64.

Thysen, 1., 1993b. Productivity control and decision support in dairy herds. In:
Schiefer, G. (Ed.), Integrated systems in agricultural informatics. Bonn, pp. 149—
158.

Thysen, 1., Enevoldsen, C., 1994. Visual monitoring of reproduction in dairy herds.
Preventive Veterinary Medicine 19, 189-202.

Thysen, I., Enevoldsen, C., Hindhede, J., Sgrensen, J. T., 1988. Et system til styring
af melkeproduktion og reproduktion i kvaegbesatningen. In: (Istergaard, V.,
Hindhede, J. (Eds.), Studier i kveegproduktionssystemer. Vol. 649 of Beretning
fra Statens Husdyrbrugsforsgg. Kgbenhavn, pp. 15-57.



316 BIBLIOGRAPHY

Toft, N., Jgrgensen, E., 2002. Estimation of farm specific parameters in a lon-
gitudinal model for litter size with variance components and random dropout.
Livestock Production Science 77, 175-185.

Toft, N., Kristensen, A. R., Jgrgensen, E., 2005. A framework for decision sup-
port related to infectious diseases in slaughter pig fattening units. Agricultural
Systems 85, 120-137.

Treacy, D., 1987. In: Proc. of th 6th Conf. Australian Ass. of Anim. Breed. &
Gen. University of Western Australia, Perth, WA Australia, Dep. Agric. & Rural
Affairs, box 125, Bendigo, Vic. 3550 Australia,, pp. 285-288.

Turner, M., Gurney, P., Belyavin, C., 1983. Automatic weighing of layer-
replacement pullets housed on litter or in cages. British Poultry Science 24,
33-45.

van Arendonk, J. A. M., 1984. Studies on the replacement policies in dairy cattle.
i. evaluation of techniques to determine the optimum time for replacement and
to rank cows on future profitability. Zeitschrift fiir Tierziichtung und Ziichtungs-
biologie 101, 330-340.

van Arendonk, J. A. M., 1985. Studies on the replacement policies in dairy cattle.
ii. optimum policy and influence of changes in production and prices. Livestock
Production Science 13, 101-121.

van Arendonk, J. A. M., 1986. Studies on the replacement policies in dairy cattle.
iv. influence of seasonal variation in performance and prices. Livestock Produc-
tion Science 14, 15-28.

van Arendonk, J. A. M., 1988. Management guides for insemination and replace-
ment decisions. Journal of Dairy Science 71, 1050-1057.

van Arendonk, J. A. M., Dijkhuizen, A. A., 1985. Studies on the replacement poli-
cies in dairy cattle. iii. optimum policy and influence of changes in production
and prices. Livestock Production Science 13, 333-349.

Van Bebber, J., Reinsch, N., Junge, W., Kalm, E., 1999. Monitoring daily milk
yields with a recursive test day repeatability model (kalman filter). Journal of
Dairy Science 82 (11), 2421-2429.

Van der Stuyft, E., Schofield, C., Randall, J., Wambacq, P., Goedseels, V., 1991.
Development and application of computervision systems for uses in livestock
production. Computers and Electronics in Agriculture 6, 243-265.

van der Wal, J., Wessels, J., 1985. Markov decision processes. Statistica Neer-
landica 39, 219-233.



BIBLIOGRAPHY 317

Verstegen, J. A. A. M., Sonnemans, J., Huirne, R. B. M., Dijkhuizen, A. A.,
Cox, J. C., 1998. Quantifying the effects of sow-herd management information
systems on farmers’ decision making using experimental economics. American
Journal of Agricultural Economics 80, 821.

West, M., Harrison, J., 1997. Bayesian Forecasting and Dynamic Models, 2nd Edi-
tion. Springer Series in Statistics. Springer, New York.

West, M., Harrison, J. F., Migon, H. S., 1985. Dynamic generalized linear models
and bayesian forecasting. Journal of the American Statistical Association 80,
73-83.

White, C. C. L., White, D. J., 1989. Markov decision processes. European Journal
of Operational Research 39, 1-16.

Whittemore, C. T., Fawcett, R. H., 1976. Theoretical aspects of a flexible model to
simulate protein and lipid growth in pigs. Animal Production 22, 87.

Williams, H. P., 1985. Model Building in Mathematical Programming. Wiley.

Wood, P. D. P, 1967. Algebraic model of the lactation curve in cattle. Nature 216,
164-165.



318 BIBLIOGRAPHY




Appendix E

Transition matrices for Chapter
13

E.1 Probabilities for the actions ‘“Keep” and “Replace”



342

E.1 Probabilities for the actions “Keep” and “Replace”

Table E.1: Transition probabilities from state ¢ to state j of the 36-state model un-

der the action "Keep" (j = 1,...,12).

1 2 3 4 5 6 7 8 9 10 11 12

Bad genetic merit

1st lactation 2nd lactation 3rd lactation 4th lactation

i g; li y;, L A H L A H L A H L A H
1 B 1 L 0 0 0 06 03 01 O 0 0 0 0 0
2 B 1 A 0 0 0 02 06 02 O 0 0 0 0 0
3 B 1 H 0 0 0 01 03 06 O 0 0 0 0 0
4 B 2 L 0 0 0 0 0 0 06 03 01 O 0 0
5 B 2 A 0 0 0 0 0 0 02 06 02 O 0 0
6 B 2 H 0 0 0 0 0 0 01 03 06 O 0 0
7 B 3 L 0 0 0 0 0 0 0 0 0 06 03 0.1
8 B 3 A 0 0 0 0 0 0 0 0 0 02 06 0.6
9 B 3 H 0 0 0 0 0 0 0 0 0 01 03 0.6
0 B 4 L 19 19 19 0 0 0 0 0 0 0 0 0
11 B 4 A 19 19 19 0 0 0 0 0 0 0 0 0
12 B 4 H 19 19 19 0 0 0 0 0 0 0 0 0
3 A 1 L 0 0 0 0 0 0 0 0 0 0 0 0
4 A 1 A 0 0 0 0 0 0 0 0 0 0 0 0
15 A 1 H 0 0 0 0 0 0 0 0 0 0 0 0
16 A 2 L 0 0 0 0 0 0 0 0 0 0 0 0
17 A 2 A 0 0 0 0 0 0 0 0 0 0 0 0
18 A 2 H 0 0 0 0 0 0 0 0 0 0 0 0
9 A 3 L 0 0 0 0 0 0 0 0 0 0 0 0
200 A3 A 0 0 0 0 0 0 0 0 0 0 0 0
21 A 3 H 0 0 0 0 0 0 0 0 0 0 0 0
22 A 4 L 19 19 19 0 0 0 0 0 0 0 0 0
23 A 4 A 19 19 19 0 0 0 0 0 0 0 0 0
24 A 4 H 19 19 19 0 0 0 0 0 0 0 0 0
25 H 1 L 0 0 0 0 0 0 0 0 0 0 0 0
26 H 1 A 0 0 0 0 0 0 0 0 0 0 0 0
27 H 1 H 0 0 0 0 0 0 0 0 0 0 0 0
2866 H 2 L 0 0 0 0 0 0 0 0 0 0 0 0
29 H 2 A 0 0 0 0 0 0 0 0 0 0 0 0
30 H 2 H 0 0 0 0 0 0 0 0 0 0 0 0
3. H 3 L 0 0 0 0 0 0 0 0 0 0 0 0
32 H 3 A 0 0 0 0 0 0 0 0 0 0 0 0
33 H 3 H 0 0 0 0 0 0 0 0 0 0 0 0
34 H 4 L 19 19 19 0 0 0 0 0 0 0 0 0
3 H 4 A 19 19 19 0 0 0 0 0 0 0 0 0
36 H 4 H 19 19 19 0 0 0 0 0 0 0 0 0

Legends: ¢ = State; g; = genetic merit of state ¢ indicated as B = Bad, A = Average,
H = High; [; = lactation number of state ¢; y; = milk yield of state ¢ indicated as L.
= Low, A = Average, H = High.
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Table E.2: Transition probabilities from state ¢ to state j of the 36-state model un-

der the action "Keep" (j = 13,...,24).

13 14 15 16 17 18 19 20 21 22 23 24

Average genetic merit

1st lactation 2nd lactation 3rd lactation 4th lactation

i g li y; L A H L A H L A H L A H
1 B 1 L 0 0 0 0 0 0 0 0 0 0 0 0
2 B 1 A 0 0 0 0 0 0 0 0 0 0 0 0
3 B 1 H 0 0 0 0 0 0 0 0 0 0 0 0
4 B 2 L 0 0 0 0 0 0 0 0 0 0 0 0
5 B 2 A 0 0 0 0 0 0 0 0 0 0 0 0
6 B 2 H 0 0 0 0 0 0 0 0 0 0 0 0
7 B 3 L 0 0 0 0 0 0 0 0 0 0 0 0
8 B 3 A 0 0 0 0 0 0 0 0 0 0 0 0
9 B 3 H 0 0 0 0 0 0 0 0 0 0 0 0
0 B 4 L 19 19 19 0 0 0 0 0 0 0 0 0
1 B 4 A 19 19 19 0 0 0 0 0 0 0 0 0
12 B 4 H 19 19 19 0 0 0 0 0 0 0 0 0
3 A 1 L 0 0 0 06 03 01 O 0 0 0 0 0
4 A 1 A 0 0 0 02 06 02 O 0 0 0 0 0
15 A 1 H 0 0 0 01 03 06 O 0 0 0 0 0
16 A 2 L 0 0 0 0 0 0 06 03 01 O 0 0
17 A 2 A 0 0 0 0 0 0 02 06 02 O 0 0
18 A 2 H 0 0 0 0 0 0 01 03 06 O 0 0
19 A 3 L O 0 0 0 0 0 0 0 0 06 03 0.1
20 A3 A 0 0 0 0 0 0 0 0 0 02 06 06
21 A 3 H 0 0 0 0 0 0 0 0 0 01 03 06
22 A 4 L 19 19 19 0 0 0 0 0 0 0 0 0
23 A 4 A 19 19 19 0 0 0 0 0 0 0 0 0
24 A 4 H 19 19 19 0 0 0 0 0 0 0 0 0
25 H 1 L 0 0 0 0 0 0 0 0 0 0 0 0
26 H 1 A 0 0 0 0 0 0 0 0 0 0 0 0
27 H 1 H 0 0 0 0 0 0 0 0 0 0 0 0
2866 H 2 L 0 0 0 0 0 0 0 0 0 0 0 0
29 H 2 A 0 0 0 0 0 0 0 0 0 0 0 0
30 H 2 H 0 0 0 0 0 0 0 0 0 0 0 0
3. H 3 L 0 0 0 0 0 0 0 0 0 0 0 0
32 H 3 A 0 0 0 0 0 0 0 0 0 0 0 0
33 H 3 H 0 0 0 0 0 0 0 0 0 0 0 0
3 H 4 L 19 19 19 0 0 0 0 0 0 0 0 0
3 H 4 A 19 19 19 0 0 0 0 0 0 0 0 0
36 H 4 H 19 19 19 0 0 0 0 0 0 0 0 0

Legends: ¢ = State; g; = genetic merit of state ¢ indicated as B = Bad, A = Average,
H = High; [; = lactation number of state ¢; y; = milk yield of state ¢ indicated as L.
= Low, A = Average, H = High.
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Table E.3: Transition probabilities from state ¢ to state j of the 36-state model un-

der the action "Keep" (j = 25, ..., 36).

25 26 27 28 29 30 31 32 33 34 35 36

High genetic merit

1st lactation 2nd lactation 3rd lactation 4th lactation

i g; li y;, L A H L A H L A H L A H
1 B 1 L 0 0 0 0 0 0 0 0 0 0 0 0
2 B 1 A 0 0 0 0 0 0 0 0 0 0 0 0
3 B 1 H 0 0 0 0 0 0 0 0 0 0 0 0
4 B 2 L 0 0 0 0 0 0 0 0 0 0 0 0
5 B 2 A 0 0 0 0 0 0 0 0 0 0 0 0
6 B 2 H 0 0 0 0 0 0 0 0 0 0 0 0
7 B 3 L 0 0 0 0 0 0 0 0 0 0 0 0
8 B 3 A 0 0 0 0 0 0 0 0 0 0 0 0
9 B 3 H 0 0 0 0 0 0 0 0 0 0 0 0
0 B 4 L 19 19 19 0 0 0 0 0 0 0 0 0
11 B 4 A 19 19 19 0 0 0 0 0 0 0 0 0
12 B 4 H 19 19 19 0 0 0 0 0 0 0 0 0
3 A 1 L 0 0 0 0 0 0 0 0 0 0 0 0
4 A 1 A 0 0 0 0 0 0 0 0 0 0 0 0
15 A 1 H 0 0 0 0 0 0 0 0 0 0 0 0
16 A 2 L 0 0 0 0 0 0 0 0 0 0 0 0
17 A 2 A 0 0 0 0 0 0 0 0 0 0 0 0
18 A 2 H 0 0 0 0 0 0 0 0 0 0 0 0
9 A 3 L 0 0 0 0 0 0 0 0 0 0 0 0
200 A3 A 0 0 0 0 0 0 0 0 0 0 0 0
21 A 3 H 0 0 0 0 0 0 0 0 0 0 0 0
22 A 4 L 19 19 19 0 0 0 0 0 0 0 0 0
23 A 4 A 19 19 19 0 0 0 0 0 0 0 0 0
24 A 4 H 19 19 19 0 0 0 0 0 0 0 0 0
25 H 1 L 0 0 0 06 03 01 O 0 0 0 0 0
26 H 1 A 0 0 0 02 06 02 O 0 0 0 0 0
27 H 1 H 0 0 0 01 03 06 O 0 0 0 0 0
2866 H 2 L 0 0 0 0 0 0 06 03 01 O 0 0
29 H 2 A 0 0 0 0 0 0 02 06 02 O 0 0
39 H 2 H 0 0 0 0 0 0 01 03 06 O 0 0
31. H 3 L O 0 0 0 0 0 0 0 0 06 03 0.1
32 H 3 A 0 0 0 0 0 0 0 0 0 02 06 0.6
33 H 3 H 0 0 0 0 0 0 0 0 0 0.1 03 0.6
34 H 4 L 19 19 19 0 0 0 0 0 0 0 0 0
3 H 4 A 19 19 19 0 0 0 0 0 0 0 0 0
36 H 4 H 19 19 19 0 0 0 0 0 0 0 0 0

Legends: ¢ = State; g; = genetic merit of state ¢ indicated as B = Bad, A = Average,
A = High; [; = lactation number of state ¢; y; = milk yield of state ¢ indicated as L.
= Low, A = Average, A = High.
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Table E.4: Transition probabilities from state ¢ to state j of the 36-state model un-
der the action "Replace" (j = 1,...,12).

1

2

3

4

5

6

7

8

9

10 11 12

Bad genetic merit

1st lactation

2nd lactation

3rd lactation

4th lactation

i ¢ I3 y» L A H L A H L A H L A H
1 B I L 19 19 19 0 0 0 0 0 0O 0 0 0
2 B 1 A 19 19 19 0 0 0 0 0O O O 0 O
3B I H 19 19 19 0 0 0 0 0O O O 0 O
4 B 2 L 19 19 1199 0 0 0 0 0 0 0 0 0
5 B 2 A 19 19 19 0 0 0 0 0 O O 0 O
6 B 2 H 19 19 19 0 0 0 0 0O O O 0 O
7 B 3 L 19 19 19 0 0 0 0 O O O 0 O
8 B 3 A 19 19 19 0 0 0 0 0 O O 0 O
9 B 3 H 19 19 1199 0 0 0 0 0 0O 0 0 0
10 B 4 L 19 19 1/9 0 0 0 0 0 0 0 0 0
11 B 4 A 19 19 1/9 0 0 0 0 0 0 0 0 0
12 B 4 H 19 19 1/9 0 0 0 0 0 0 0 0 0
3 A 1 L 19 19 1/9 0 0 0 0 0 0 0 0 0
4 A 1 A 19 19 1/9 0 0 0 0 0 0 0 0 0
15 A 1 H 19 19 1/9 0 0 0 0 0 0 0 0 0
16 A 2 L 19 19 1/9 0 0 0 0 0 0 0 0 0
7 A 2 A 19 19 1/9 0 0 0 0 0 0O O 0 0
18 A 2 H 19 19 1/9 0 0 0 0 0 0 0 0 0
19 A 3 L 1/9 19 1/9 0 0 0 0 0 0 0 0 0
20 A 3 A 19 19 19 0 0 0 0 0O O O 0 O
20 A3 H 19 19 19 0 0 0 0 O O O 0 0
2 A 4 L 19 19 19 0 0 0 0 0O O O 0 O
22 A 4 A 19 19 19 0 0 0 0O O O O 0 O
24 A 4 H 19 19 19 0 0 0 0 0O O O 0 O
25 H I L 19 19 199 0 0 0 0 O O O 0 O
26 H I A 19 19 19 0 0 0 0 0 O O 0 0
27 H I H 19 19 19 0 0 0 0 0 0 O 0 0
26 H 2 L 19 19 19 0 0 0 0 O O O 0 0
29 H 2 A 19 19 19 0 0 0 0 0 0O O 0 0
30 H 2 H 19 19 19 0 0 0 0 0O 0 O 0 0
313. H 3 L 19 19 19 0 0 0 0O O O O 0 O
32 H 3 A 19 19 19 0 0 0 0 0 O O 0 0
33 H 3 H 19 19 19 0 0 0 0 0O O O 0 0
3 H 4 L 19 19 19 0 0 0 0 O O O 0 O
33 H 4 A 19 19 199 0 0 0 0O O O O 0 0
3% H 4 H 19 19 19 0 0 0 0 0 O O 0 0

Legends: 7 = State; g; =

genetic merit of state ¢ indicated as B = Bad, A = Average,
H = High; [; = lactation number of state ¢; y; = milk yield of state ¢ indicated as L.
= Low, A = Average, H = High.
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Table E.5: Transition probabilities from state ¢ to state j of the 36-state model un-
der the action "Replace" (j = 13,...,24).
13 14 15 16 17 18 19 20 21 22 23 24
Average genetic merit

1st lactation 2nd lactation  3rd lactation  4th lactation

i g; li y;, L A H L A H L A H L A H

1 B 1. L 19 1/9 19 0 O O O O O O O O

2 B 1 A 19 19 19 0 O O O O O O 0 O

3 B 1 H 19 19 19 0 O O O O O O O O

4 B 2 L 19 19 1/9 0 O O O O O O 0 O

5 B 2 A 19 1/9 19 0 O O O O O O O O

6 B 2 H 19 19 19 0 O O O O O O 0 O

7 B 3 L 19 19 19 0 O O O O O O 0 O

8 B 3 A 19 19 19 0 o0 O O O O O 0 O

9 B 3 H 19 19 1/9 0 O O O O O O 0 O

M B 4 L 19 19 19 0 O O O O O O O O
1 B 4 A 19 19 19 0 O O O O O O 0 O
2 B 4 H 19 19 19 0 O O O O O O O0 O
3 A 1 L 19 1/9 19 0 O O O O O O O O
4 A 1 A 19 19 19 0 O O O O O O O O
5 A 1 H 19 19 19 0 O O O O O O O O
6 A 2 L 19 19 19 0 O O O O O O 0 o0
7 A 2 A 19 19 19 0 0 O O O O O O0 O
8 A 2 H 19 19 19 0 O O O O O O O O
9 A 3 L 19 19 19 0 O O O O O O O O
200 A3 A 19 19 19 0 0 O O O O O 0 O
20, A3 H 19 19 19 0 O O O O O O 0 O
2 A 4 L 19 19 19 0 o0 O O O O O 0 O
23 A 4 A 19 19 19 0 o0 O O O O O 0O O
24 A 4 H 19 19 19 0 o0 O O O O O 0 O
2 H 1 L 19 19 19 0 o0 O O O O O 0 ©0
26 H 1 A 19 19 19 0 o0 O O O O O 0 O
27 H 1 H 19 19 1/9 0 o0 O O O O O 0 O
26 H 2 L 19 19 19 0 O O O O O O 0 O
29 H 2 A 19 19 19 0 o0 O O O O O 0 O
30 H 2 H 19 19 19 0 O O O O O O 0 O
3Z. H 3 L 19 19 1/9 0 o0 O O O O O 0 O
32 H 3 A 19 19 1/9 0 o0 O O O O O 0 O
33 H 3 H 19 19 19 0 O O O O O O 0 O
34 H 4 L 19 19 19 0 o0 O O O O O 0 O
3 H 4 A 19 19 19 0 o0 O O O O O 0 O
36 H 4 H 19 19 1/9 0 0 O O O O O 0 O

Legends: ¢ = State; g; = genetic merit of state ¢ indicated as B = Bad, A = Average,
H = High; [; = lactation number of state ¢; y; = milk yield of state ¢ indicated as L.
= Low, A = Average, H = High.
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Table E.6: Transition probabilities from state ¢ to state j of the 36-state model un-
der the action "Replace" (j = 25, ..., 36).

25

26

27

28 29

30 31

32 33

34 35 36

High genetic merit

1st lactation

2nd lactation

3rd lactation

4th lactation

i ¢ Il v, L A H L A H L A H L A H
1 B I L 19 19 19 0 0 0 0 0 0 0 0 0
2 B 1 A 19 19 19 0 0 0 0 0 0 O 0 O
3B I H 19 19 19 0 0 0 0 0 0O O 0 O
4 B 2 L 19 19 1199 0 0 0 0 0 0 0 0 O
5 B 2 A 19 19 19 0 0 0 0 0 0 O 0 O
6 B 2 H 19 19 19 0 0 0 0 0 0 O 0 O
7 B 3 L 19 19 19 0 0 0 0 0 0 O 0 O
8 B 3 A 19 19 19 0 0 0 0 O O O 0 O
9 B 3 H 19 19 19 0 0 0 0 0 0 0 0 0
10 B 4 L 19 19 1/9 0 0 0 0 0 0 0 0 0
11 B 4 A 19 19 1/9 0 0 0 0 0O 0 0 0 0
12 B 4 H 19 19 1/9 0 0 0 0 0 0 0 0 0
3 A 1 L 19 19 1/9 0 0 0 0 0 0 0 0 0
4 A 1 A 19 19 1/9 0 0 0 0 0O 0 0 0 0
15 A 1 H 19 19 1/9 0 0 0 0 0 0 0 0 0
16 A 2 L 19 19 1/9 0 0 0 0 0 0 0 0 0
17 A 2 A 19 19 1/9 0 0 0 0 O 0 0 0 0
18 A 2 H 19 19 1/9 0 0 0 0 0 0 0 0 0
19 A 3 L 19 19 1/9 0 0 0 0 0 0 0 0 0
20 A 3 A 19 19 19 0 0 0 0 0 0 0O 0 O
20 A 3 H 19 19 19 0 0 0 0 0 0 0 0 0
2 A 4 L 19 19 19 0 0 0 0 0 0 O 0 O
22 A 4 A 19 19 19 0 0 0 0 0 0 0O 0 0
24 A 4 H 19 19 19 0 0 0 0 0 0 O 0 O
2 H I L 19 19 199 0 0 0 0 0 0 0 0 0
26 H I A 19 19 19 0 0 0 0 0 0 0O 0 0
27 H I H 19 19 19 0 0 0 0 0 0 0 0 0
2260 H 2 L 19 19 199 0 0 0 0 0 0 0O 0 0
29 H 2 A 19 19 19 0 0 0 0 0 0 0 0 0
39 H 2 H 19 19 19 0 0 0 0 0 0 0 0 0
31. H 3 L 19 19 199 0 0 0 0 0 0O O 0 0
32 H 3 A 19 19 19 0 0 0 0 0 0 0 0 0
33 H 3 H 19 19 19 0 0 0 0 0 0 0 0 0
3 H 4 L 19 19 199 0 0 0 0 0 0 O 0 O
33 H 4 A 19 19 199 0 0 0 0 0 0 0 0 0
3% H 4 H 19 19 19 0 0 0 0 0 0 0O 0 0

Legends: 7 = State; g; =

genetic merit of state ¢ indicated as B = Bad, A = Average,
A = High; [; = lactation number of state ¢; y; = milk yield of state ¢ indicated as L.
= Low, A = Average, A = High.



