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Abstract Livestock farming problems are often sequential in nature. For instance
at a specific time instance the decision on whether to replace an animal or not is
based on known information and expectation about the future. At the next decision
epoch updated information is available and the decision choice is re-evaluated. As
a result Markov decision processes (MDPs) have been used to model livestock de-
cision problems over the last decades. The objective of this chapter is to review the
increasing amount of papers using MDPs to model livestock farming systems and
provide an overview over the recent advances within this branch of research. More-
over, theory and algorithms for solving both ordinary and hierarchical MDPs are
given and possible software for solving MDPs are considered.

1 Introduction

Mathematical models for livestock farming systems have been used since the fifties.
Examples of techniques used include deterministic optimization such as linear pro-
gramming (for an early example, see Fisher and Schruben, 1953) and dynamic pro-
gramming (with White, 1959, as one of the first applications to livestock farming)
as well as stochastic models based on Monte Carlo simulation (e.g. Sørensen et al,
1992) and Markov decision processes (MDPs).

The nature of livestock systems differ from other industrial systems. Compared
to e.g. modelling the state of a machine, modeling the state of e.g. a cow is more
complex. First, the traits of an animal is harder to estimate and animals like humans
differ, i.e. the variance between animals is much higher and it is harder to determine
which state the animal is in. Second, livestock systems have a cyclic nature. In most
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cases an animal is inserted into the herd and after some cyclic periods (lactations,
parity, feeding cycle) replaced with a new animal. Decisions regarding which cycle
and when to replace the animal within the cycle have to be taken. Finally, often
the supply of animals is not unlimited, e.g a cow cannot be replaced if we do not
have a heifer available. These three characteristics have also been referred to as the
uniformity, reproductive cycle and availability features of livestock systems (Ben-
Ari et al, 1983).

Livestock farming is often sequential in nature. For instance at a specific time
instance the decision on whether or not to replace an animal is based on observed
information and expectation about the future. At the next decision epoch updated
information is available and the decision choice is re-evaluated. Since random vari-
ation is a core property of a livestock system MDPs have often been used to model
livestock decision problems over the last decades (see Kristensen, 1994, for an
overview). At a specified point in time, the decision maker observes the state of
a system and makes a decision. The decision and the state of the process produce
two results: the decision maker receives an immediate reward (or incurs an imme-
diate cost), and the system evolves probabilistically to a new state at a subsequent
discrete point in time. At this subsequent point in time, the decision maker faces a
similar problem. However, the observed state may be different from the previously
observed state. The goal is to find a policy of decisions (dependent on the observa-
tion of the state) that maximizes, for example, the expected discounted reward.

In the MDP the state of the animal is defined by a set of state variables, each
representing a trait relevant for the livestock system under consideration, e.g. for a
dairy cow state variables could be milk yield level, lactation number, days in milk,
reproductive status etc. It is assumed that the value of the state variable belongs
to a finite set of levels/classes that represent the value of the trait. Often a trait is
continuous and must be discretized into a set of levels. If we consider a realistic
number of levels we may face the problem known as the “curse of dimensionality”:
the number of possible states grows exponentially with the number of state variables
(the state space is often formed as the cartesian product of the number of levels of
each of the state variables). This is one of the major drawbacks of using a MDP to
model a livestock system.

Hierarchical MDPs (HMDP) are an attempt to decompose the state space and to
reduce the number of states in the MDP. The model is a series of finite time MDPs
built together into one MDP called the founder process. As a result, the age of the
animal can be omitted in the state space compared with an ordinary MDP model.
Moreover, it takes into account that the production is cyclic. When a replacement
occurs, not just a regular state transition takes place but rather the process (life cycle
of the replacement animal) is restarted. HMDPs were first considered by Kristensen
(1988) assuming 2 levels in the HMDP. Later, Kristensen and Jørgensen (2000) ex-
tended the methodology to multilevel HMDPs such that MDPs can be built together
at multiple levels. Note that an HMDP is an infinite-stage MDP with parameters
defined in a special way, but nevertheless in accordance with all usual rules and
conditions relating to such processes. The basic idea of the hierarchic structure is
that stages of the process can be expanded to so-called child processes, which again
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may expand stages further to new child processes leading to multiple levels. Even
though that HMDPs may help to reduce the number of state variables the curse of
dimensionality is still a problem.

In most papers an MDP is used to model a single animal and its successors
(single-component). Hence herd constraints (heifers, feed, milk-quota etc.) are not
taken into account. To represent the whole herd a multi-component MDP has to
be considered as discussed in Ben-Ari and Gal (1986) and Kristensen (1992). The
multi-component model is based on single-component MDPs representing a single
animal and its future successors. However, the model is far too large for optimi-
sation in practice. Therefore, the need for an approximate method emerged, and a
method called parameter iteration was introduced by Ben-Ari and Gal (1986) and
later modified by Kristensen (1992) to whom reference is made for details. To the
authors’ knowledge the parameter iteration method has only been applied under a
constraint of a limited supply of heifers Kristensen (1992).

The state of an MDP must be directly observable. Since the state in the model
represents the present traits of the animal in question this means that the traits are
assumed to be well defined and directly observable. This is not always the case.
Traits of an animal vary no matter whether we are considering the milk yield of
a dairy cow or the litter size of a sow. Moreover, it is not obvious to what extent
the observed trait is a result of a permanent property of the animal or a temporary
random fluctuation. Most often the observed value is the result of several permanent
and random effects. This problem can be solved by modeling the trait as a stochastic
process and embedding the parameters of the process into the MDP instead of the
observed value of the trait. The technique is referred to as Bayesian updating. As
observations are done, the Bayesian approach is used to increase the knowledge on
the true value of the trait. The technique was first used in practise by Kennedy and
Stott (1993) for milk yield and has been described in detail by Kristensen (1993)
and generalized in Nielsen et al (2011).

For an MDP to be valid the Markov property must be fulfilled. It implies that the
state space at any decision epoch (or stage) must contain sufficient information for
determination of the probability distribution of the state to be observed at next deci-
sion epoch. In a straight forward formulation of a decision problem this is rarely the
case and various tricks must be used in order to make the process Markovian. The
most common trick is to include memory variables in the state space (for instance
the milk yield of previous lactation(s) in dairy cow models). This approach has been
used in numerous models in practice. A more elaborate approach is to use Bayesian
updating to estimate latent traits (for instance an abstract milk yield capacity of a
dairy cow) as observations are done over time.

The objective of this chapter is to review the increasing amount of papers using
MDPs to model livestock farming systems and provide an overview over the recent
advances within this branch of research. Moreover, theory and algorithms for solv-
ing both ordinary and hierarchical MDPs are given and possible software for solving
MDPs are considered. The chapter provides and updated overview compared to the
latest survey (Kristensen, 1994) which is almost 20 years old. The authors have tried
to include all peer review articles using MDPs to model livestock systems which re-
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sulted in more than 80 papers in total. Some very old applications (mainly from
the sixties and seventies) have been omitted in the overview. Most of those early
applications were deterministic and some of them were published in research re-
ports which are not online available. Readers who are interested in those papers are
referred to Kennedy (1986) who gives an overview of applications until the early
eighties.

The chapter is organized as follows. In Section 2 a short introduction to ordinary
MDPs and hierarchical MDPs is given and algorithms for optimizing the process are
described. Next, a survey over papers using MDPs applied to cattle farming prob-
lems is given in Section 3. Dairy production is the most successful area on which
MDPs have been applied. The chapter is continued in Section 4 with a survey over
papers within the area of pig production. Finally, a few papers which lies outside
these two areas are considered in Section 5. Software for solving both ordinary and
hierarchical MDPs are discussed in Section 6. At last conclusions and directions for
future research are discussed in Section 7.

2 Methodology

We briefly introduce the methodology of MDPs and describe the different algo-
rithms which can be used to find an optimal policy under different criteria. Many
papers using MDPs to solve livestock problems consider a stochastic process where
the length of a stage is not constant. This is actually an extension of the MDP
methodology (where a constant stage length is assumed), referred to as a semi MDP
(Tijms, 2003). However, due to the use of the term MDP instead of a semi MDP in
the past we will stick to this. Indeed, throughout the rest of the paper we will use
the term MDP for both ordinary and hierarchical (semi) MDPs and explicit write
ordinary or hierarchical if needed.

2.1 Finite-horizon Markov decision processes

We consider an ordinary finite-horizon MDP with N stages. At stage n the system
occupies a state belonging to the finite set of system states Sn. Given that the de-
cision maker observes state s ∈ Sn at stage n, he must choose an action a from the
set of finite allowable actions As,n generating an immediate reward ra

s (n). Let ta
s (n)

denote the expected length of stage n, i.e. the time until the system evolves prob-
abilistically to a new state (decision epoch) and β a

s (n) the corresponding discount
rate of the stage. Note that if α denotes the interest rate per time unit, and the stage
length is L then the discount factor is exp(−αL) if we assume continuous com-
pounding or 1/(1+α)L if we assume periodic compounding. Let pa

sŝ (n) denote the
transition probabilities of observing state ŝ ∈ Sn+1 at stage n+ 1 given state s and
action a.
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A policy δ is a function that assigns to each state s a fixed action a = δ (s), i.e. a
policy provides the decision maker with a plan of which action to take given stage
and state. Under a given policy we write ra

s (n), ta
s (n) and pa

sŝ (n) as rδ
s (n), tδ

s (n) and
pδ

sŝ (n), respectively.
Let Xn denote the state of the system at the n’th decision epoch. Under a finite

time-horizon the total expected discounted reward criterion may be relevant when
consider livestock problems:

h(δ ) = E

(
N

∑
n=1

rδ
Xn (n)

n−1

∏
i=1

β
δ
Xi
(i)

)
, (1)

where the product is the total discount factor need to discount the reward at stage n
back to stage 1. Moreover, if no discounting is used (α = 0) then (1) calculates the
total expected reward. It is assumed that no decision is taken at decision epoch N,
i.e. a deterministic dummy action aN = δ (XN) is taken. The reward raN

XN
(N) is often

referred to as the terminal or salvage reward.
Having introduced the notation for an MDP, we are also able to give a formal def-

inition of the Markov property mentioned in the introduction. The Markov property
is satisfied in an MDP if and only if

Pa(Xn+1|Xn) = Pa(Xn+1|Xn, . . . ,X1) = pa
XnXn+1

,∀n < N,Xn ∈ Sn,a ∈ AXn,n, (2)

where Pa denotes the probability function under the decision a. In words it means
that the state at next stage is only allowed to depend on the present state and action.
Any other historical information is of no relevance. It is essential for the correctness
of the results from an MDP that this property is satisfied.

An optimal policy maximizing (1) can be found using the following Bellman
equations, Bellman (1957):

vn (s) =
{

maxa∈As,n

{
ra

s (n)+β a
s (n)∑ŝ∈Sn+1

pa
sŝ (n)vn+1 (ŝ)

}
n < N

raN
s (N) n = N

, (3)

where vn(s) is the total expected discounted reward in state s at stage n under the
optimal policy until the process terminates. Equations (3) show that the optimal
policy can be found by analyzing a sequence of simpler inductively defined single-
stage problems. This is often referred to as value iteration.

2.2 Infinite-horizon Markov decision processes

A situation where the stage of termination is unknown (or at least far ahead) is
usually modeled using an infinite planning horizon (N = ∞). Given that the process
is time homogeneous, i.e. the states and actions are independent of stage number
and the policy stationary (constant over stages), we can drop the index n from the
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notation given in Section 2.1. Criterion (1) can still be considered (now an infinite
sum) and will converge towards a fixed value when increasing N if discount rates
are less than one.

Let Z(t) denote the total reward incurred until time t and assume that the MDP
is unichain (see Tijms (2003) for a formal definition). As an alternative criterion we
may consider the average reward per time unit:

g(δ ) = lim
t→∞

Z(t)
t

=
∑s∈S πδ

s rδ
s

∑s∈S πδ
s tδ

s
(4)

where πδ
s are the limiting state probabilities or equilibrium distribution probabilities

given policy δ . Other criteria such as the average reward per physical output can
also be considered and are defined as in (4) by redefining ta

s as the physical output
instead. For instance, Nielsen et al (2004) maximize the average reward per steer.
Furthermore, if all stages have equal length the denominator of (4) equals one and
(4) reduces to the well-known formula for an ordinary MDP.

Various optimization techniques can be used to find the optimal policy such as
value iteration, policy iteration, linear programming, etc. We will restrict ourselves
to the first two here since linear programming have only been used in two of the
papers reviewed.

Value iteration can be used to approximate the optimal policy. It has been used in
the majority of papers since it is relatively strait forward to implement the algorithm.
Moreover, the algorithm is good for solving large-scale MDP problems since there is
no need for solving a large set of equations simultaneously. However, the number of
iterations is problem dependent and typically increases in the number of states of the
problem under consideration. The value iteration algorithm is given in Fig. 1. The
algorithm is initialized in Step 0 where a pre-specified small accuracy number ε is
chosen. Next, we use the recursive equations to update vs (n), which under criterion
(1) denotes the total expected discounted reward in state s with n periods left and
a terminal cost of vs (0). Under criterion (4) the recursive equation is based on a
data transformation method (see (Tijms, 2003)). This is repeated until the stopping
condition is met (Step 3).

Note that if ε is sufficiently small and the same policy is found during several
iterations, we may be rather sure that the optimal policy has been found. However,
there is no guarantee but for practical purposes the deviation will have no signifi-
cance. Under criterion (4) the stopping criterion ensures that 0≤ (g∗−g(δ ))/g∗≤ ε ,
where g∗ denotes the optimal value to (4), i.e. the average reward per time unit
g(δ ) ∈ [mn,Mn] is at most 100ε% away from the optimal average reward per time
unit. Finally observe that if the time between each decision epoch is constant (ta

s = 1
and β a

s = β ) then the recursive formulas in Table 1 reduces to the well-known for-
mulas for an ordinary MDP. During the years more advanced variants of value iter-
ation algorithms have been developed which provide faster convergence and better
stopping conditions. The interested reader is referred to Tijms (2003) and Puterman
(1994) for details.
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Step 0: Set vs (0) such that 0≤ vs (0)≤mina∈As{ra
s /ta

s }, ∀s ∈ S. Choose a number ε > 0, set
n←0 and τ = mins∈S,a∈As{ta

s } (under criterion (4)).
Step 1: For each s ∈ S compute vs (n) using the recursive equation in Table 1 and
let δ be the policy whose actions maximize vs (n).

Step 2: Compute the bounds mn = mins∈S {vs (n)− vs (n−1)} and Mn = maxs∈S {vs (n)− vs (n−1)}
Step 3: If the condition in Table 1 is statisfied then stop; otherwise set n←
n+1 and go to Step 1.

Fig. 1 Value iteration algorithm for an infinite-horizon ordinary MDP.

Table 1 Equations and expressions to be used in the value iteration algorithm.

Criterion Step 1 - Recursive equation Step 3 - Condition

(1) vs (n) = max
a∈As

{
ra

s +∑
ŝ∈S

β
a
s pa

sŝv
δ
ŝ (n−1)

}
Mn ≤ ε

(4) vs (n) = max
a∈As

{
ra

s

ta
s
+(1− τ

ta
s
)vs (n−1)+

τ

ta
s

∑
ŝ∈S

pa
sŝv

δ
ŝ (n−1)

}
0≤Mn−mn ≤ εmn

Step 0: Choose a policy δ.
Step 1: Solve the set of linear equations in Table 2.
Step 2: For each state s, find the action a that maximizes the expression
given in Table 2, and set δ ′(s) = a.

Step 3: If δ ′ = δ then stop; otherwise go to Step 1.

Fig. 2 Policy iteration algorithm for an infinite-horizon ordinary MDP.

Policy iteration unlike value iteration finds an optimal policy in a finite number
of steps. The algorithm is robust in the sense that in general it converges very fast,
the number of iterations are independent of the number of states and varies typically
between 3 and 15 (Tijms, 2003). However, to use the algorithm |S| linear equations
must be solved simultaneously which may be computational costly for large state
spaces. The policy iteration algorithm is given in Fig. 2. In Step 0 an arbitrary policy
is chosen and in Step 1 the set of equations is solved. Under criterion (1) vs denotes
the total expected discounted reward of a process starting in state s and running over
an infinite number of stages. Under criterion (4) vs is the relative value compared to
state ŝ. The difference between the relative value of two states denotes the amount
we are willing to pay for stating in the state with the highest relative value. In Step
2 we update the current policy. This is repeated until a better policy can not be
found (Step 3). Finally observe that if time between each decision epoch is constant
(ta

s = 1 and β a
s = β ) then the recursive formulas in Table 2 reduce to the well-known

formulas for an ordinary MDP. For more advanced variants of the policy iteration
algorithm see Puterman (1994).
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Table 2 Equations and expressions to be used in the policy iteration algorithm.

Step 1 Step 2

Criterion Equations Unknowns Expression

(1) vs = rδ
s +∑ŝ∈S β δ

s pδ
sŝvŝ,∀s ∈ S v1, . . . ,v|S| rδ

s +∑ŝ∈S β δ
s pδ

sŝv
δ
ŝ

(4) vs = rδ
s −gtδ

s +∑ŝ∈S pδ
sŝvŝ,∀s ∈ S,vŝ = 0 v1, . . . ,v|S|,g rδ

s − tδ
s g(δ )+∑ŝ∈S pδ

sŝv
δ
ŝ
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Fig. 3 Illustration of a stage in a hierarchial MDP. Level 0 indicate the founder level, and the
nodes indicates states at the different levels and stages. A child process (oval box) represent a finite
horizon MDP and is uniquely defined by a given state and action of its parent process (the specific
link/edge from the parent to the child). Links at the last stage of a process illustrate the possible
transitions back to the parent process when the child process ends.

2.3 Hierarchical MDPs

Hierarchical MDPs are an attempt to decompose the state space and reduce the
number of states in the MDP. The approach also provide a more intuitively way
of modeling the stochastic process. Moreover, it reduces the number of equations
which must be solved simultaneously under policy iteration. We consider hierar-
chical MDPs with multiple levels also referred to as multi-level hierarchic Markov
processes. A hierarchical MDP is an infinite stage MDP with parameters defined
in a special way, but nevertheless in accordance with all usual rules and conditions
relating to such processes. The basic idea of the hierarchic structure is that stages of
the process can be expanded to a so-called child processes which again may expand
stages further to new child processes leading to multiple levels.

A stage in a process with three levels is illustrated in Fig. 3. The infinite hori-
zon process at level 0 is named the founder process and is the only process in the
structure which is not the child of a parent process. Each node corresponds to a
state at different levels and stages. A child process (oval box) is a finite horizon
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MDP and is uniquely defined by a given stage, state and action of its parent process
(the specific link/edge from the parent to the child). For each finite horizon process
an initial probability distribution of the states at stage 1 is assumed, i.e. a fictitious
stage 0 with only one state and one action is added to the model. As a result given
a state and action at the parent level a transition to the child process can be repre-
sented deterministically (edges in Fig. 3). Moreover, a set of terminal probabilities
are given representing the transition probabilities back to the parent process when
the last stage ends (the links from the last stage in the child in Fig. 3).

Note that a finite horizon process at level l > 0 is uniquely defined by a sequence
of stages, states and actions ρ = (s0,a0,n1,s1,a1, . . . ,nl−1,sl−1,al−1) and at level 0
we only have the infinite horizon founder process which we will denote ρ0. We will
use the notation in Section 2.1 and Section 2.2 given a specific process ρ; however,
an action a is not nessasarely identical to an action as it is usually defined in an
MDP. In addition to the selection of a specific process we also have to choose which
policy to follow during its child processes.

Let δρ denote an expanded policy of process ρ , i.e. a function that assigns to
each state s a fixed action a = δρ(s), i.e. an expanded policy provides the decision
maker with a plan of which action to take given stage and state in the parent process
and all its child processes. Then the reward rδρ

s (n), expected length tδρ

s (n), discount
factor β

δρ

s (n) and transition probabilities pδρ

sŝ (n) can be calculated recursively by
processing the child processes from the lowest levels and upward towards the par-
ent process ρ . Hence an expanded value iteration can be applied. Under the total
expected discounted reward criterion (1) and given a set of terminal rewards, the
optimal policy δρ of a finite horizon process can be found by recursively applying
value iteration (3) from the lowest levels and upward towards the parent process ρ .
The same holds when considering the average reward per time unit criterion (4)
where we must solve the following recursive equations:

vn (s) =

{
maxa∈As,n

{
ra

s (n)−gta
s +∑ŝ∈Sn+1

pa
sŝ (n)vn+1 (ŝ)

}
n < N

raN
s (N) n = N

, (5)

Note that an additional average reward g must be chosen together with the terminal
values. For further details see Kristensen and Jørgensen (2000).

We can also apply a single iteration of expanded value iteration to the founder
process to determine all the parameters needed to solve the set of equations when
considering policy iteration. A hierarchical policy iteration algorithm can now be
formulated in Fig. 4. It combines policy iteration at the founder level and value
iteration at the other levels. First some initial values are chosen in Step 0 and the
expanded policy and the parameters of the founder process are calculated. Next the
linear equations at the founder level are solved in Step 1 and used as terminal values
in the expanded value iteration in Step 2. If no new policy is found the algorithm
stops in Step 3.
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Step 0: Set vs (0) = 0,∀s ∈ Sρ0 and g = 0 (under criterion (4)). Perform an expanded

value iteration to find the expanded policy δρ0 and parameters r
δρ0
s , t

δρ0
s , β

δρ0
s

and p
δρ0
sŝ .

Step 1: Solve the set of linear equations in Table 2 using the parameters of
the founder process.

Step 2: Perform expanded value iteration to find the expanded policy δ ′ρ0
and

parameters r
δ ′ρ0
s , t

δ ′ρ0
s , β

δ ′ρ0
s and p

δ ′ρ0
sŝ .

Step 3: If δ ′ρ0
= δρ0 then stop; otherwise redefine δρ0 to the new policy and go

to Step 1.

Fig. 4 Hierarchical policy iteration algorithm for an hierarchical MDP.

3 MDP models applied to cattle farming

This section gives an overview of MDPs applied to cattle farming problems. Around
60 papers describing more than 40 different models were found in this area. Table
3 summarizes the models by listing their structure in terms of the number of levels
(the value 1 indicates an ordinary MDP), the criterion of optimality, the state vari-
ables with number of levels/classes, stage lengths with maximum number of stages,
decisions being optimized, application area and supplementary information. Each
row in the table corresponds to a model and reference to the paper(s) describing it
is given in the first column. It should be noticed that it is not always clear whether
a paper should be classified as describing a new model (by further developing an
existing model) or it should be classified as just an application of an existing model.

Only decision models are included in the survey. Simple Markov chain models
are not mentioned even though they are, of course, closely related to MDPs since
an MDP with predefined policy is a Markov chain. Examples of such, not included,
Markov chain models are Allore et al (1998); Cabrera (2012); Giordano et al (2012);
Noordegraaf et al (1998) as well as Jalvingh et al (1993a,b, 1994).

Many of the models mentioned in the survey are by the authors themselves pre-
sented as dynamic programming models and the term Markov decision process is
seldom mentioned. Dynamic programming exists in a deterministic version and a
stochastic version, and particularly the stochastic version is identical to the MDP
concept described in this chapter. Very often, however, the use of the term dynamic
programming implies that the optimization method is value iteration. The determin-
istic version is also compatible with an MDP, but such models are degenerate in the
sense that for any stage n, state s and action a there exists a state s′ at stage n+ 1
where pa

ss′ = 1. Accordingly, we have for any state ŝ 6= s′ that pa
sŝ = 0.

In a book Kennedy (1986) reviewed dynamic programming applications to agri-
culture until the early eighties. As a main rule, models mentioned in that book are
omitted, but for the most important application area, which is dairy cow replace-
ment, also models mentioned by Kennedy (1986) are included. The main reason is
that the study by Giaever (1966) is so important that it would be preposterous to
omit it.
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The vast majority of papers and models address problems related to dairy cows.
A few models consider growing cattle (the review by Kennedy, 1986, contains sev-
eral very early applications to growing cattle). Nielsen et al (2004) and Nielsen and
Kristensen (2007) consider the raising of steers and Pihamaa and Pietola (2002)
study the effect of beef cattle management under agricultural policy reforms in Fin-
land. Also management of heifers (Mourits et al, 1999a,b) has been studied. All
models are defined at the individual animal level and since all of them also basi-
cally consider the replacement problem, they reflect a chain of animals successively
replacing each others over a finite or infinite time horizon. They therefore all have
the action “Replace” as an option. The alternative to replacement is, of course, to
keep the animal, and many models only have “Keep” as an alternative to “Replace”.
Many models describing cows and heifers also have an “Inseminate” action, and the
models optimizing raising of steers and heifers have actions defining the feeding
level in some sense.

The first models published until the mid-eighties were ordinary MDPs solved by
value iteration over a number of stages typically aiming at approximating an infinite
horizon. The criterion of optimality was typically maximization of expected dis-
counted reward, which is still today the most commonly used criterion. The concept
of hierarchical MDPs was described by Kristensen (1988) and over the following
years it has been increasingly used in cattle models. In total, 11 of the models men-
tioned in Table 3 are hierarchical. Most of the recent hierarchical models have been
implemented in the MLHMP software system developed by Kristensen (2003). The
technique has made it possible to handle even very large models with millions of
states like Demeter et al (2011), Nielsen et al (2010) and Houben et al (1994). The
introduction of hierarchical models also implies that policy iteration has become a
common optimization technique (for the founder process).

When it comes to state variables, the models include age of the animal as a state
variable. For dairy cows it is typically measured by lactation number and often also
stage of lactation. Also the reproductive state (typically measured by month of con-
ception or length of calving interval) and the milk yield level are usually included
in the dairy cow models. In the beginning the health status was not included in the
models, but starting with Stott and Kennedy (1993), Kennedy and Stott (1993) and
Houben et al (1994) mastitis has often been included in the state space. In recent
years (Bar et al, 2008a,b; Cha et al, 2011; Heikkila et al, 2012) mastitis has been
studied intensively. Also other diseases have occasionally been included (Cha et al,
2010; Grohn et al, 2003; Heikkila et al, 2008).

When comparing state variables across models it is important to remember that
in hierarchical models some of the state variables are typically implicitly given by
stage number. This is typically the case for properties like age (lactation number and
lactation stage for dairy cows) and/or season. Thus, in hierarchical models it is most
often not necessary to include state variables for such properties because they are
given by the model structure. Hence, the same problem formulated as a hierarchical
model will typically have fewer state variables than if it had been formulated as an
ordinary MDP.
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Stage lengths (for hierarchical models at the most detailed level) vary from one
day as in Kalantari and Cabrera (2012); Nielsen et al (2010) to typically a lactation
period in many early models. Geographically, the largest number of models (12)
describe US conditions, but also models for UK conditions (8), Dutch conditions
(6), Danish (4) and Finish conditions (4) are common. Two models describe MDPs
developed for New Zealand, two for Ireland, two for Canada and for each of the
countries Iran, Costa Rica, France and Israel one model has been developed.

Very few papers actively discuss how to satisfy the Markov property, but in many
papers it is obvious that the problem is considered (in other papers it is ignored). The
preferred method for (approximate) fulfilment of the Markov property has been by
use of memory variables where milk yield of previous lactation is remembered. This
tradition goes back to van Arendonk (1985b) and has been continued in many sub-
sequent models using that model as a basis (see the “Misc” column of Table 3).
The same approach was used by Kristensen (1987, 1989). The main drawback of
memory variables is that they contribute considerably to the curse of dimensional-
ity. This was realized already by Giaever (1966) who instead defined milk yield as a
weighted index of all lactations until now. He showed how it was possible to define
the weight coefficients of the index in such a way that the Markov property was not
violated. Also McArthur (1973) defined an index which in his case was a simple av-
erage of lactation yields. Thus, the state space was reduced, but the Markov property
was not satisfied.

Another approach used in several models is to express the milk yield as partly re-
sulting from a permanent property of the cow. This approach was used by Kristensen
(1987, 1989) (as a supplement to the memory variable also included). In the mod-
els developed at Cornell University (Bar et al, 2008a,b; Cha et al, 2010, 2011) the
permanent property was the only approach used to satisfy the Markov property. All
the models mentioned are hierarchical MDPs which are particularly well suited for
handling permanent traits. Nevertheless, Harris (1990) seems to have used a similar
principle in an ordinary MDP.

When the principles of Bayesian updating was described by Kristensen (1993)
and (independently) applied by Kennedy and Stott (1993) a new tool became avail-
able for model builders. Instead of memory variables, the Bayesian updating focuses
on estimating an abstract latent milk yield capacity of a cow based on all observed
milk yield records. It was, however, not until the models by Nielsen et al (2010) and
Demeter et al (2011) that it was implemented as a main feature. In other application
areas (Kristensen and Søllested, 2004a,b; Lien et al, 2003; Verstegen et al, 1998) it
was used earlier.
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Table 3: Overview over literature using MDPs for modeling within cattle farming.

Papera Levelsb Criterionc State variablesd Stage Lengthe Decisionsf Applicationg Misc

Kalantari and Cabrera (2012) 1 DR (VI) lactation (9), days in preganacy (282),
DIM (750), milk yield (5)

day (∞) K, R dairy (US) Study the effect of reproductive
performance.

Heikkila et al (2012) 1 DR (PI) month (78), culling reason (3), mastitis
cases (5)

month (∞) K, R dairy (FIN) Focus on clinical mastitis

Langford and Stott (2012) 1 DR (VI) parity (12), milk yield level (15) parity (20) K, R dairy (UK) Extension of Stott (1994) which study
the effect on welfare

Cha et al (2011) 3 DR (HPI) permanent milk yield level (5); dummy
(1); temporary milk yield level (5),
pregnancy state (9), clinical mastitis state
(13)

cow life (∞);
parity (8);
month (20)

I, K, R dairy (US) Lactation number and stage of lactation
known from stage number. Extension of
the work by Bar et al (2008b) and Cha
et al (2010).

Demeter et al (2011) 4 DR (HPI) permanent milk yield potential (PMYP)
estimated at first calving(13); PMYP
estimated at the beginning of lactation
(13), months open previous lactation (8);
PMYP estimated this month (13),
temporary milk yield capacity (13),
pregnancy state (2); PMYP estimated
this month (13), temporary milk yield
capacity (13)

cow life (∞);
parity (12);
month/gestation
period (18);
month (9)

I, K, R dairy (NL) Used to assess herd level implication of
genetic selection strategies. Lactation
number, stage of lactation and month of
pregnancy known from stage numbers.

Cabrera (2010) 1 R/T (LP) parity (15), month in lactation (24),
pregnancy status (10)

month (∞) K, R dairy (US) Consider different diets and nitrogen
excretion

Cha et al (2010) 3 DR (HPI) permanent milk yield level (5); dummy
(1); temporary milk yield level (5),
pregnancy state (9), lameness state (13)

cow life (∞);
parity (8);
month (20)

I, K, R dairy (US) Lactation number and stage of lactation
known from stage number. Extension of
the work by Bar et al (2008b) with focus
on lameness.

Kalantari et al (2010) 1 DR (VI) lactation (12), month after calving (24),
milk production class (15), pregnancy
status (10)

lactation (180) K, R dairy (IR) A modification of van Arendonk and
Dijkhuizen (1985) applied to Iran
conditions.

(Continued on next page)
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Table 3: Overview over literature using MDPs for modeling (cattle farming - table continued).

Papera Levelsb Criterionc State variablesd Stage Lengthe Decisionsf Applicationg Misc

Nielsen et al (2010) 3 DR (HPI) dummy (1); milk yield potential (MYP)
estimated at the beginning of lactation
(13); combination of MYP estimated
until present day and temporary milk
yield level (45 combinations), drying off
week (32)

cow life (∞);
parity (10); day
(483)

K, R dairy (DK) Lactation number and stage of lactation
known from stage number. Focus on
management. Bayesian updating used.

Bar et al (2008a,b) 3 DR (HPI) permanent milk yield level (5); mastitis
in previous lactation (2); temporary milk
yield level (5), pregnancy state (9),
mastitis state in present lactation (13)

cow life (∞);
parity (8);
month (20)

I, K, R dairy (US) Lactation number and stage of lactation
known from stage number. Focus on cost
of clinical mastitis.

Heikkila et al (2008) 1 DR (PI) lactation (10), milk yield (3), health
status (3)

lactation (∞) K, R dairy (FIN) Focus on diseases and milk yield.

Nielsen and Kristensen (2007);
Nielsen et al (2004)

4 R/T (HPI),
R/Q (HPI)

birth month (12); live weight (up to 26)
previous winter feeding level (2), weigh
gain (5); weight gain at fattening (3)

steer life (∞);
seasons (sum-
mer/winter) (6);
month (up to 6);
month (4)

G, Fe, Fa,
R

steer (DK) Nielsen et al (2004) consider average
reward per steer while in Nielsen and
Kristensen (2007) the average reward per
time unit is maximized

de Vries (2006) 1 DR (VI) lactation (12), days open (10), month of
lactation (24), milk yield (15)

month (∞) K, R dairy (US) Extension of model by de Vries (2004).

Stott et al (2005) 1 DR (VI) lactation (12), milk yield (15) lactation (20) K, R dairy (UK) Studies financial incentive to control
paratuberculosis. Extension of model by
Stott (1994).

de Vries (2004) 1 DR (VI) lactation (12), days open (10), month of
lactation (24), milk yield (15), month of
calving (12)

month (∞) K, R dairy (US) Studies the effect of delayed replacement
with seasonal cow performance.

Grohn et al (2003) 1 DR (VI) lactation (12), days open (10), month of
lactation (20), milk yield (5), month of
calving (12), disease state (240)

month (60) I, K, R dairy (US) Extension of models by Delorenzo et al
(1992) and Mccullough and Delorenzo
(1996b).

Stott et al (2002) 1 DR (VI) lactation (12), milk yield (15), somatic
cell count (11)

lactation (20) K, R dairy (UK) Extension of model by Stott (1994).

Pihamaa and Pietola (2002) 1 DR (VI) live weight (507) week (326) Fe, K, R beef (FIN) Study the effect of agricultural policy
reforms in Finland.

(Continued on next page)
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Table 3: Overview over literature using MDPs for modeling (cattle farming - table continued).

Papera Levelsb Criterionc State variablesd Stage Lengthe Decisionsf Applicationg Misc

Rajala-Schultz and Grohn (2001) 1 DR (VI) lactation (12), production level (5),
month of calving (12), month of
lactation (19), days open (10)

month (60) I, K, R dairy (FIN) Compares optimal decisions with farmer
decisions. Use of model by Mccullough
and Delorenzo (1996b).

Vargas et al (2001) 1 DR (VI) lactation l (12), stage in lactation (11),
milk yield l (15), l−1 (15)

month (180) I, K, R dairy (CR) Based on model by van Arendonk and
Dijkhuizen (1985).

Rajala-Schultz et al (2000a,b) 1 DR (VI) parity (12), days open (10), stage of
lactation (19), production level (3, 5, 7),
month of calving (12)

month (48-120) I, K, R dairy (FIN) Use of model by Mccullough and
Delorenzo (1996b).

Yalcin and Stott (2000) 1 DR (VI) lactation (12), milk yield (15), somatic
cell count (11)

lactation (20) K, R dairy (UK) Extension of work by Stott (1994)

Cardoso et al (1999a,b) 1 DR (VI) lactation l (12), stage in lactation (11),
milk yield l (15), l−1 (15)

month (240) I, K, R dairy (BR) Use of model by van Arendonk and
Dijkhuizen (1985).

Mourits et al (1999a,b) 2 DR (HPI) month of birth (12); body weight (173),
reproductive state (32), prepubertal
growth rate (3)

rearing period
(∞); month (30)

Fe, I, K,
R

heifers (NL) Age of heifer known from stage number.
The keep and inseminate decisions can
be done under different growth strategies

Yates and Rehman (1998) 1 DR (LP) lactation (12), genetic level (4) year (10) K, R dairy (UK) The keep decision has 2 options: produce
calf for replacement or for beef.

Dekkers et al (1998) 1 DR (VI) lactation l (12), month in lactation (16),
milk yield l (15), calving intervals (6)

month (180) I, K, R dairy (CDN) Quantify the impact of persistency of
lactation. Adaptation of the work in van
Arendonk and Dijkhuizen (1985)

Haran (1997) 2 DR (HPI) month of first calving (12); current
month (12), milk production level (15),
time of conception (5)

cow life (∞);
lactation stage
(72)

I, K, R dairy (IRL) Lactation number and stage of lactation
known from stage number.

Mccullough and Delorenzo
(1996a,b)

1 DR (VI) lactation (12), production level (15),
month of calving (12), month of
lactation (19), days open (10)

month (60) I, K, R dairy (US) Focus: levels of state variables, milk
price and management inputs. Model
based on Delorenzo et al (1992)

Houben et al (1994) 2 R/T (HPI) dummy (1); milk production l (15), l−1
(15), calving interval (18), mastitis
current month (2), mastitis cases l (4),
l +1 (4)

life span of a
cow (∞); month
(204)

I, K, R dairy (NL) Focus on mastitis

Stott (1994) 1 DR (VI) lactation (12), yield class (15) lactation (∞) K, R dairy (UK) Uses bayesian updating for milk yield

(Continued on next page)
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Table 3: Overview over literature using MDPs for modeling (cattle farming - table continued).

Papera Levelsb Criterionc State variablesd Stage Lengthe Decisionsf Applicationg Misc

Kennedy and Stott (1993) 1 DR (VI) lactation l (12), yield class (5), mastitis
status l−1 (2)

lactation (∞) K, R dairy (UK) Focus: model and bayesian updating

Stott and Kennedy (1993) 1 DR (VI) lactation number (12), mastitis state (2) lactation (∞) K, R dairy (UK) Focus on clinical mastitis.

Delorenzo et al (1992) 1 DR (VI) lactation (12), production level (15),
month of calving (12), month of
lactation (16), days open (7)

month (240) I, K, R dairy (US) Model based on van Arendonk (1986)

Dekkers (1991) 1 DR (VI) lactation l (12), stage in lactation (11),
milk yield l (15), l−1 (15), time of
conception (6)

month (180) I, K, R dairy (CDN) Studies economic values for breeding
goals. Adaptation of the work in van
Arendonk and Dijkhuizen (1985)

Boichard (1990) 1 DR (VI) lactation l (6), lactation stage (22), stage
of conception (7), calving date (18), milk
yield in l (9), l−1 (9)

20 days (200) I, K, R dairy (F) Focus: economic value of conception

Harris (1990) 1 DR (VI) lactation (10), best linear prediction of
future milkfat production, milk volume
production, milk protein production,
breed, calving date (6)

year (20) K, R dairy (NZ) It is not clear from the description
whether an optimization is performed or
the model is only used for simulation.

Kristensen (1989); Kristensen and
Thysen (1991a,b)

2 R/Q (HPI) estimated genetic class at first calving
(5); milk yield of present lactation (15),
milk yield of previous lactation (15),
length of calving interval (8)

cow life (∞); 4
week period
(108)

K, R dairy (DK) Lactation number and stage of lactation
known from stage number. Average
reward per kg milk is maximized.
Extension of work by Kristensen (1987).
The model is later applied by Kristensen
and Thysen (1991a,b)

Rogers et al (1988a,b) 1 DR (VI) lactation l (12), stage in lactation (11),
milk yield l (15), l−1 (15), time of
conception (6)

month (180) I, K, R dairy (US) Adaptation of the work in van Arendonk
and Dijkhuizen (1985)

Kristensen (1987) 2 DR (HPI) estimated genetic class at first calving
(5); milk yield of present lactation (15),
milk yield of previous lactation (15),
length of calving interval (8)

cow life (∞);
lactation stage
(24)

K, R dairy (DK) Lactation number and stage of lactation
known from stage number.

(Continued on next page)
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Table 3: Overview over literature using MDPs for modeling (cattle farming - table continued).

Papera Levelsb Criterionc State variablesd Stage Lengthe Decisionsf Applicationg Misc

van Arendonk (1986) 1 DR (VI) lactation l (12), stage in lactation (11),
milk yield l (15), time of conception (6),
month of calving (12)

month (180) I, K, R dairy (NL) Extension of the work in van Arendonk
(1985b)

van Arendonk (1988); van Aren-
donk and Dijkhuizen (1985)

1 DR (VI) lactation l (12), stage in lactation (11),
milk yield l (15), l−1 (15), time of
conception (6)

month (180) I, K, R dairy (NL) Extension of the work in van Arendonk
(1985b)

van Arendonk (1985a,b) 1 DR (VI) lactation l (12), stage in lactation (11),
milk yield l (15), l−1 (15)

month (240) I, K, R dairy (NL) The model has had a huge impact on
later models.

Ben-Ari and Gal (1986); Ben-Ari
et al (1983)

1 DR (VI) lactation, milk yield, body weight lactation (∞) K, R dairy (IL) Ben-Ari and Gal (1986) consider how to
solve the multi-component system.

Killen and Kearney (1978) 1 R (VI) lactation number (9) lactation (20) R, K dairy (IRL) Very small model.

Stewart et al (1977, 1978) 1 DR (VI) lactation (7), body weight (5), 305d milk
yield (11), milk fat pct (7)

lactation (10) R, K dairy (CDN) Stewart et al (1977) describe the model
and Stewart et al (1978) consider
different breeds. Culling decisions were
assumed to occur at 60 days postcalving

McArthur (1973) 1 R (VI) lactation number (7), milk production
level (80)

lactation (15) K, R dairy (NZ) Milk yield represented as average over
lactations.

Smith (1971, 1973) 1 DR (VI) lactation l (6), yield in l (29), l−1 (29),
calving interval (3)

lactation (15) R, K dairy (US) Far more detailed model than the one by
Giaever (1966).

Giaever (1966) 1 DR (VI) lactation number (5), calving interval
(3), milk yield (7)

dairy (US) Alternative optimization methods
described. Important considerations
about Markov property.

a Papers have been ordered in reverse order of year.
b Number of levels in the MDP. If 1 then the MDP is an ordinary MDP.
c DR = expected discounted reward, R = expected reward, R/T = average reward per time unit, R/Q average reward per quantity unit. Algorithm used is given in parentheses (VI = value

iteration, PI = policy iteration, HPI = hierarchical policy iteration, LP = Linear programming).
d State variables for each level in the process (separated with semicolon). The number of levels/classes of each state variable is given in parentheses.
e Stage length at each level in the process (separated with semicolon). Maximum number of stages given in parentheses.
f R = replace, K = keep, I = Inseminate, G = Grazing, Fe = Feeding intensity, Fa = Fattening.
g Animal group applied to. The country from which the parameters has been estimated is given in parentheses.
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4 MDP models applied to pig farming

Table 4 summarizes MDPs applied to pig farming along the same guidelines as
for the cattle applications in Table 3. A total of 17 papers describing 12 different
models were identified. As with the cattle models only decision models are included
implying that simple Markov chain models are excluded. Examples of such not
included Markov chain models are Jalvingh et al (1992a,b) and Pla et al (2003).

Analogously to the many dairy cow replacement models in the previous section
a total of 6 sow replacement models were found. The remaining papers (6) address
problems related to production of finishers. Also the pig models are in some sense
replacement models, but unlike the cattle models there are also examples of MDPs
defined at group level. Thus, Kristensen et al (2012) model a pen, and Toft et al
(2005) as well as Kure (1997a,b,c) model a batch of finishers. There are, however,
also examples of finisher models (Glenn, 1983; Jørgensen, 1993; Niemi, 2006) de-
fined at individual animal level. The sow models are all defined at individual animal
level.

Decisions considered in the sow models are in addition to “Keep” and “Replace”
also insemination method and number of inseminations to accept before culling for
infertility. In finisher models decisions are the marketing policy and, some times, the
feeding level. As concerns the optimization method the first models published were
ordinary MDPs based on value iteration optimizing expected reward or expected
discounted reward. Later hierarchical models became the norm with the determin-
istic model by Niemi (2006) as an exception. Also for the hierarchical pig models
the preferred software tool has been the MLHMP system described by Kristensen
(2003).

In all models the age of the animal(s) is included either as a state variable or
indirectly through the stage number in hierarchical models. In the sow models litter
size is often included either directly or through Bayesian updating of a latent litter
size potential as in Kristensen and Søllested (2004a,b) and Rodriguez et al (2011).
Also, the number of unsuccessful inseminations is sometimes directly or indirectly
(through the model structure) taken into account. One model by Rodriguez et al
(2011) included a weak sow index defined by clinical observations in the state space.

Stage lengths vary from one day as in Niemi (2006) to a reproduction period (par-
ity) in several models. Geographically, the largest number of models (7) describe
Danish conditions, but also models for Dutch, UK, Spanish and Finish conditions
are found.

As concerns the Markov property, the approach has been the same as with dairy
models. Dutch models (Huirne and Hardaker, 1998; Huirne et al, 1988, 1991, 1993)
used memory variables (2 or 3 previous litter sizes). Later models (Jørgensen, 1992;
Kristensen and Søllested, 2004a,b; Kristensen et al, 2012; Rodriguez et al, 2011)
used Bayesian updating.
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Table 4: Overview over literature using MDPs for modeling pig farming.

Papera Levelsb Criterionc State variablesd Stage Lengthe Decisionsf Applicationg Misc

Kristensen et al (2012) 2 R/T (HPI) dummy (1); number of pigs remaining (21),
estimated permanent growth potential (7),
estimated temporary growth potential (7),
estimated within pen standard deviation (9)

prod. cycle in pen
(∞); week (17)

Dδ finishers (DK) Embeds a Dynamic Linear Model
linking automatically recorded live
weights to state variables. Group
level: models a pen.

Rodriguez et al (2011) 3 R/T (HPI) dummy (1); exp. serially correlated effect
(21), exp. permanent litter size potential
(21)h; health status (2), gestation status (3),
litter size (21), weak sow index of previous
parity (5), weak sow index of present parity
(5)

sow life (∞);
parity (12); parity
phases (3)

NM, AI,
R, K, Mi

sows (DK) Extension of work by Kristensen
and Søllested (2004a,b). The weak
sow index is based on clinical
observations.

Toft et al (2005) 2 ? (HPI) disease transition (5); configurations of
susceptible and infectious pigs (?), fraction
of pigs still present (5)

prod. cycle in pen
(∞); day and
week (88)

V, T, Dπ ,
K

finishers (DK) Group level: models a batch.

Niemi (2006) 1 DR (VI) lean tissue weight (37), fat tissue weight (52) day (1800) R, P, E finishers (FIN) Deterministic model. Very detailed
control options.

Kristensen and Søllested (2004a,b) 3 R/T dummy (1); exp. serially correlated effect
(21), exp. permanent litter size potential
(21)h; health status (2), gestation status (3),
litter size (21)

sow life (∞);
parity (12); parity
phases (3)

NI, AI, R,
K, Mi

sows (DK) Uses Bayesian updating to estimate
litter size

Pla et al (2004) 1 R/T (PI) reproductive state (9), parity (11) variable (from
event to event)

R, K sows (E) Uses herd data for estimation of
transition probabilities.

Kure (1997a,b,c) 2 DR (HPI) observed live weigh, observed carcass
leanness

prod. cycle in pen
(∞); weeks of
delivery (4)

Dδ , E finishers (DK) Uses Recursive Dynamic
Programming in child process.
Group level: models a batch.

Jørgensen (1993) 2 DR (VI) dummy (1); weeks since start (5), pigs in
pen (32) [161]

prod. cycle in pen
(∞); week (5)

Dδ , E finishers (DK) The first period at second level is
actually 10 weeks (minimum
feeding time)

Jørgensen (1992) 2 L/T (VI) dummy (1); parity (20), exp. random effect
and influence on litter size (100) [2001]

sow life (∞);
parity (20)

R, K sows (DK) Litter size based on bayesian
updating. Hierarchical structure
imply reduced state space
compared to (Huirne et al, 1993)

(Continued on next page)
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Table 4: Overview over literature using MDPs for modeling pig farming - table continued.

Papera Levelsb Criterionc State variablesd Stage Lengthe Decisionsf Applicationg Misc

Huirne and Hardaker (1998);
Huirne et al (1991, 1993)

1 DR (VI) parity p (11), litter size in p−1, p−2 (12),
unsuccessful breedings in p (4) [5633]

parity (70) R, K sows (NL) Huirne and Hardaker (1998) uses
the MDP as a sub-model. ??Unclear
if the state length is one day (see
page 165 (Huirne et al, 1993))

Huirne et al (1988) 1 DR (VI) parity p (15), litter size in p−1, p−2, p−3
(20)

parity (50) R, K sows (NL) Litter size based on a dynamic
formula

Glenn (1983) 1 R (VI) live weight (80), carcass composition () 5 days (17) G, P finishers (UK) Deterministic model

a Papers have been ordered in reverse order of year.
b Number of levels in the MDP. If 1 then the MDP is an ordinary MDP.
c DR = discounted reward, L/T = avg. litter size per time unit, R/T = avg. reward per time unit. Algorithm used is given in parentheses (VI = value iteration, PI = policy iteration, HPI =

hierarchical policy iteration).
d State variables for each level in the process (separated with semicolon). The number of levels/classes of each state variable is given in parentheses.
e Stage length at each level (separated with semicolon). Maximum number of stages given in parentheses.
f V = vaccinate, T = treat, Dπ = deliver π pigs, R = replace, K = keep, Dδ = deliver pigs with weight above δ , E = empty the pen, NM = natural mating, AI = Artificial Insemination, Mi =

allow i matings, P = protein level, E = energy level, G = gain.
g Animal group applied to. The country from which the parameters has been estimated is given in parentheses.
h A dummy state representing the pig has been culled is also included in the model.
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5 MDP models applied to other areas

Even though most models have been developed for applications within cattle and
pig production, a few papers within other applications exists in the literature.

Table 5 summarizes MDPs applied to other areas within livestock farming along
the same guidelines as in the tables for cattle and pig applications (Table 3 and 4).
A total of 5 papers were identified. In addition to those listed in the table, Kennedy
(1986) reviews a number of very early applications to laying hens, broilers and
sheep.

Verstegen et al (1998) used an MDP as a tool for comparing different manage-
ment information systems performance against the optimal decisions found by the
MDP and van Asseldonk et al (1999) used an MDP to optimize which IT solutions to
implement on farm. The remaining papers focus on food and mouth disease (FMD)
(Ge et al, 2010a,b) and how to compute an adaptive control strategy of an animal
disease among a set of farms (Viet et al, 2012). Decisions considered in the models
are “Keep” and “Replace”, if the farm should investment in a certain IT solution,
vaccination strategy and different FMD control options.

Due to the various applications state variables differ much. Examples are IT in-
vestment status, epidemic situation, infected and month etc. Stage lengths vary from
one day as in Ge et al (2010a) to a year (van Asseldonk et al, 1999). Two papers
use ordinary MDPs based on value iteration optimizing expected discounted reward
and three papers use hierarchical models, with two implemented using the MLHMP
software (Kristensen, 2003).

The models by Ge et al (2010a) and Ge et al (2010b) use Bayesian updating
to estimate the disease spread properties of the FMD virus causing the FMD out-
break, and Verstegen et al (1998) use Bayesian updating to estimate the properties
of hypothetical projects.
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Table 5: Overview over literature using MDPs within other areas than cattle and pig farming.

Papera Levelsb Criterionc State variablesd Stage Lengthe Decisionsf Applicationg Misc

Viet et al (2012) 1 DR (VI) current month (12), S = susceptible
(N +1), I = infected (N +1), V =
vaccinated (N +1); only state
combinations where S+ I +V = N

1 month (∞) V, no V disease control (F) Total number of herds N varied
from 50 to 400.

Ge et al (2010b) 2 DR (HPI) epidemic situation (3), export ban (2),
infection index (5), estimated growth
potential of epidemic (5), uncertainty of
growth potential (5)

duration of
epidemic (∞);
10 day periods
(10)

BP, V, PC FMD control (NL) Modification of work by Ge et al
(2010a).

Ge et al (2010a) 3 (HPI) epidemic situation (2), infection index
(5), estimated growth potential of
epidemic (5), uncertainty of growth
potential (5)

duration of
epidemic (∞);
10 day periods
(10); 1 day (10)

SP, BP,
V, PC,
STOP

FMD control (NL) See also Ge et al (2010b).

van Asseldonk et al (1999) 1 DR (VI) IT investment status (115): automatic
concentrate feeder (11), activity
measurement (11), milk production
measurement (11), milk temperature
measurement (11), conductivity
measurement (11)

year (20) Invest IT investment (NL) Studies investments in IT
equipment at farm level.
Deterministic model.

Verstegen et al (1998) 2 ? (HPI) number of production weeks, yield per
production week

project life (∞);
year (10)

R, K MISi evaluation (NL) Project age known from stage
number. Model with Bayesian
updating. Use the MDP as a tool
for comparing against farmers
choice.

a Papers have been ordered in reverse order of year.
b Number of levels in the MDP. If 1 then the MDP is an ordinary MDP.
c DR = discounted reward, L/T = litter size per time unit, R/T = reward per time unit. Algorithm used is given in parentheses (VI = value iteration, PI = policy iteration, HPI = hierarchical

policy iteration).
d State variables for each level in the process (separated with semicolon). The number of levels/classes of each state variable is given in parentheses.
e Stage length at each level (separated with semicolon). Maximum number of stages given in parentheses.
f V = vaccinate, BP = Basic control (FMD), PC = Preemptive culling (FMD), SP = Stop program (FMD), R = replace, K = keep.
g Animal group applied to. Country parameters has been estimated from given in parentheses.
i Management information system.
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6 Software for solving MDP models

The value iteration algorithm for ordinary MDPs is relatively easy to implement and
most papers have implemented the algorithm using various programming languages.
The policy iteration is harder to implement since we have to invert a matrix when
solving the set of linear equations. That is probably the reason that most studies
reported in literature have used the more straightforward value iteration algorithm.
In a few cases software packages in MATLAB1 have been used to perform policy
iteration (Heikkila et al, 2008, 2012). Linear programming can also be used to find
optimal policies but have only been used in two papers (Cabrera, 2010; Yates and
Rehman, 1998).

When consider hierarchical MDPs implementation becomes harder due to the
nested structure of the processes. Fortunately a general software system MLHMP
for construction, editing and optimization of Markov decision processes ranging
from finite time ordinary MDPs to hierarchical MDPs has been developed by Kris-
tensen (2003). MLHMP is implemented in Java2 with the possibility of building
models as plug-ins. Moreover, it can handle all the criteria mentioned in this paper.
MLHMP has been used to solve almost all hierarchical MDPs in the literature. Re-
cently, a package “Markov decision processes (MDPs) in R” (Nielsen, 2011) has
been developed for model building in R3. It is based on a C++ implementation for
fast execution of policy and value iteration and can be used to solve both ordinary
and hierarchical MDPs under all criteria.

7 Conclusions and directions for further research

In this chapter MDPs have been considered to model livestock systems. Livestock
farming problems are often sequential in nature and hence MDPs are suitable as a
modeling tool.

A total of approximately 80 papers using a MDP for modeling the livestock sys-
tem have been reviewed with the first paper dating back to 1966 and the last paper
in 2012. Only decision models are included in the survey, i.e. simple Markov chain
models are not mentioned even though they are, of course, closely related to MDPs.
Most papers have been considered within dairy and some within pig production;
however, MDPs have also been applied to other areas.

The papers may be divided into two categories, namely, papers using MDPs as
a tool for evaluating different herd effects, e.g. different reproductive programs
(Kalantari and Cabrera, 2012) and papers formulating MDP models which may
be embedded into a management decision support system (DSS), e.g. a model for
slaughter pig marketing (Kristensen et al, 2012).

1 MathWorks Inc. http://www.matlab.com.
2 Oracle http://www.java.com/.
3 R Development Core Team http://www.R-project.org/

http://www.matlab.com
http://www.java.com/
http://www.R-project.org/
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The first category is mainly used by researchers as an evaluation tool and giving
advise to the industry. Several of the most advanced recent models are in this cate-
gory. Thus, the models by Bar et al (2008a,b) and Cha et al (2011) use the models to
estimate the costs of clinical mastitis in dairy cows and evaluate the treatment and
prevention options, and Demeter et al (2011) use their model to estimate the long
term consequences of different breeding strategies in dairy cows. It is expected that
many models developed in the future will belong to this category.

The aim of models in the second category is that they ultimately should be used
within the DSS on farm. However, the actual use of such models on farm has been
limited. Reasons for this may be that MDPs require access to good data for esti-
mating the many parameters needed in the model. Moreover the estimation process
may be cumbersome and error-prone. As a result there have been a growing focus
on using on-farm biosensors for retrieving data and algorithms for data filtration and
parameter estimation based on Bayesian updating as in (Nielsen et al, 2010) for a
dairy cow replacement model. An example from pig production is the work by Bono
et al (2012) where important litter size parameters to be used in a sow replacement
models are automatically and dynamically estimated from herd registrations and fed
into the replacement model. Furthermore, the states of the individual sows are auto-
matically identified so that the optimal decision can be returned by the optimization
model. Providing direct links from data is crucial if MDP models should be applied
within farms since the parameter settings may be quite different among farms.

Another issue is violated herd constraints. MDP models are applied at animal
level and given replacement it is assumed that a new animal is available. As a re-
sult MDP models have to be coordinated with other information streams and other
models used in the farm DSS. This calls for further research.

Due to the large number of state variables there is a trend in using hierarchical
MDPs since here state variables such as lactation number and lactation stage are
implicitly given by the model structure. Hence, the same problem formulated as
a hierarchical model will typically have fewer state variables than if it had been
formulated as an ordinary MDP. Moreover, finding the optimal policy using policy
iteration is often faster.

Finally, the number of state variables may be so large that models may face the
curse of dimensionality. This calls for research in models which finds an approx-
imate good policy using techniques such as approximate dynamic programming
(Powell, 2011).
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