Kristensen, A. R. 1993. Markov Decision Programming Techniques Applied to the
Animal Replacement Problem. Dissertation for the dr. agro. degree. Dina KVL,
Department of Animal Science and Animal Health, The Royal Veterinary and
Agricultural University, Copenhagen. ISBN 87 7026 332 9.

Chapter Il. A survey of Markov decision programming techniques applied to the
animal replacement problem (p 13-30)

A shorter version of the chapter has been published as

Kristensen, A. R. 1994. A survey of Markov decision programming techniques
applied to the animal replacement problem. European Review of Agricultural
Economics 21, 73-93. DOI: 10.1093/erae/21.1.73









A survey of Markov decision programming
techniques applied
to the animal replacement problem'

ANDERS RINGGAARD KRISTENSEN
Department of Animal Science and Animal Health The Royal Veterinary and Agricultural University,
Rolighedsvej 23, DK-1958 Frederiksberg C, Copenhagen, Denmark

Abstract

The major difficulties of the animal replacement problem are identified as uniformity, herd restraints and
the “curse of dimensionality”. Approaches for circumventing these difficulties using Markov decision pro-
gramming methods are systematically discussed, and possible optimization techniques are described and
evaluated. Assuming that the objective of the farmer is maximum net returns from the entire herd, relevant
criteria of optimality are discussed. It is concluded that a Bayesian technique is a promising approach as
concerns the uniformity problem, that parameter iteration may be used under herd restraints, and that hie-

rarchic Markov processes has contributed to the solution of the dimensionality problem.
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1. Introduction

This paper deals with a problem and a technique.
The problem is the determination of optimal repla-
cement of animals (in practice limited to cows and
sows). The technique is dynamic programming or,
to be more specific, Markov decision program-
ming. The literature on the replacement problem in
general is very extensive. Studies on the animal
replacement problem are also numerous, but natu-
rally they are fewer than for the general problem.
A review of studies on dairy cow replacement is
given by van Arendonk (1984). Also on Markov
decision programming the literature is extensive.
Recent reviews are given by van der Wal and Wes-
sels (1985) as well as White and White (1989). A
review of applications to agriculture has been
given by Kennedy (1981).

Since both the problem and the technique dis-
cussed in this paper seem to be well elucidated in
the literature, a relevant question to ask would be
why the combination of the problem and the tech-
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nique should be the subject of a survey. The ans-
wer is that animal replacement problems differ
from general replacement problems in several re-
spects, and in order to deal with the problems aris-
ing from this observation many modifications of
the general Markov decision programming tech-
nique are relevant or even necessary.

The general replacement theory most often im-
plicitly assumes industrial items as the objects of
replacement. Ben-Ari et al. (1983) mention three
main features in which the dairy cow replacement
problem differs from the industrial problem. Ex-
actly the same features are relevant in sow replace-
ment models.

— Uniformity. It is a problem that the traits of an
animal are difficult to define and measure.
Furthermore the variance of each trait is relati-
vely large.

— Reproductive cycle. The production of an animal
is cyclic. We therefore need to decide in which
cycle to replace as well as when to replace insi-
de a cycle.

— Availability. Usually there is a limited supply of
replacements (heifers or gilts). This is particu-
larly the case when the farmer only uses home-
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grown animals — for instance because of infecti-
on risks when animals are bought at the market.

The problem of availability is only one example of
a restraint that applies to the herd as a whole.
Other examples might be a milk quota, a limited
supply of roughages or limiting housing capacity.
In all cases the animals considered for replacement
compete for the resource (or quota) in question.
We shall therefore in this study consider the more
general problem of optimal replacement under
some herd restraint.

The main reason for using Markov decision pro-
gramming in the determination of optimal animal
replacement policies is probably the variation in
traits, which with this technique is taken into ac-
count directly. Also the cyclic production may be
directly considered by traditional Markov decision
programming. Very soon, however, a problem of
dimensionality is faced. If several traits of the ani-
mal are considered simultancously, and each trait
is considered at a realistic number of levels, the
state space becomes very large (the size of the
state space is in principle calculated as the number
of traits times the number of levels of each). Even
though the method in theory can handle the pro-
blem, optimization is prohibitive even on modern
computers. In literature, the problem is referred to
as the “curse of dimensionality”.

The objective of this study is to discuss how the
technique (Markov decision programming) may be
adapted to solve the problem (the animal replace-
ment problem), where uniformity and herd restra-
ints as well as the curse of dimensionality (arising
from the variability in traits and the cyclic pro-
duction) have been identified as major difficulties
to be taken into account. During the decade since
the reviews of Kennedy (1981) and van Arendonk
(1984) were written, many results have been achiev-
ed concerning these difficulties.

We shall assume throughout the study that the
objective of the farmer is the maximization of net
revenue from the entire herd. In each situation, we
shall consider how this objective may be transfor-
med to a relevant criterion of optimality to be used
in the Markov decision process.
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2. Variability and cyclic production: Markov
decision programming

As mentioned in the introduction, Markov decision
programming is directly able to take the variability
in traits and the cyclic production into account
without any adaptations. In order to have a frame
of reference, we shall briefly present the theory of
traditional Markov decision programming original-
ly described by Howard (1960).

2.1. Notation and terminology

Consider a discrete time Markov decision process
with a finite state space U = {1,2,...,u} and a finite
action set D. A policy s is a map assigning to each
state i an action s(i) € D. Let p,.j" be the transition
probability from state i to state j if the action d €
D is taken. The reward to be gained when the state
i is observed, and the action d is taken, is denoted
as r/. The time interval between two transitions is
called a stage.

We have now defined the elements of a traditio-
nal Markov decision process, but in some models
we further assume that if state i is observed, and
action d is taken, a physical quantity of m is in-
volved (e.g. Kristensen, 1989; 1991). In this study
we shall refer to m/ as the physical output. If s(i) =
d, the symbols r, m* and p, are also written as r?,
m; and p,’, respectively.

An optimal policy is defined as a policy that
maximizes (or minimizes) some predefined objec-
tive function. The optimization technique (i.e. the
method to identify an optimal policy) depends on
the form of the objective function or — in other
words — on the criterion of optimality. The over-all
objective to maximize net revenue of the entire
herd may (depending on the circumstances) result
in different criteria of optimality formulated as al-
ternative objective functions. The choice of crite-
rion depends on whether the planning horizon is
finite or infinite.

2.2. Criteria of optimality
2.2.1. Finite planning horizon
A farmer, who knows that he is going to terminate

his production after N stages, may use the maxi-
mization of total expected rewards as his criterion
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of optimality. The corresponding objective functi-
onhis

N
h(s's ™ = B(D0 ) s (1)

n=1

where E denotes the expected value, s" is the poli-
cy at stage n, and I(n) is the (unknown) state at
stage n.

If the farmer has a time preference, so that he
prefers an immediate reward to an identical reward
later on, a better criterion is the maximization of
total expected discounted rewards. If all stages are
of equal length, this is equal to applying the ob-
jective function

N
h(Sl,...,S N) =i E( ZB“‘I’F;(H)) ? (2)

n=I

where 8 < 1 is the discount factor defined by the
interest rate and the stage length.

2.2.2. Infinite planning horizon

A situation where the stage of termination is
unknown (but at least far ahead) is usually model-
ed by an infinite planning horizon (i.e. N = ©). In
that case the optimal policy is constant over stages.
The function (1) cannot be applied in this situ-
ation, but since 8 < 1, the function (2) will con-
verge towards a fixed value for N becoming very
large. Thus the objective function is given by

h(s) = ECY, B 1) 3)

n=1

Since, usually, each animal and its future suc-
cessors are represented by a separate Markov deci-
sion process, this criterion together with the crite-
rion (2), are equal to the maximization of total dis-
counted net revenues per animal. Such a criterion
is relevant in a situation where a limiting housing
capacity is the only (or at least the most limiting)
herd restraint.

An alternative criterion under infinite planning
horizon 1is the maximization of expected average
reward per unit of time. If all stages are of equal
length, the objective function in this situation is

h(s) =g =D, wir}, )

i=1

where 7 is the limiting state probability under the
policy s (i.e. when the policy is kept constant over
an infinite number of stages). This criterion max-
imizes the average net revenues per stage, i.e. over
time. It may be relevant under the same conditions
as criterion (3) if an animal and its future succes-
sors are represented by a separate Markov decision
process. Practical experience shows that the opti-
mal replacement policies determined under criteria
(3) and (4) are almost identical.

If a herd restraint (e.g. a milk quota) is imposed
on the physical output, a relevant criterion may be
the maximization of expected average reward per
unit of physical output using the objective function

s Z"Tis”fs
8r i=1
h(s)=g'=—=—"—. &)

gs it
m z T ism;v
=1

In case of a milk quota, the physical output m;}
is the milk produced by a cow in state i under poli-
cy s. The function (5) is also relevant if the crite-
rion is the maximization of the expected average
reward over time in a model where the stage
length varies. In that case the physical output re-
presents the stage length. It should be noticed that
if m? =1 for all i and d, the function (5) is identi-
cal to (4). The symbol g is the average reward
over stages (equal to g* of Eq. (4)) and g,* is the
average physical output over stages.

2.3. Optimization techniques in general Markov
decision programming

2.3.1. Value iteration

Under finite planning horizon the value iteration
method is excellent. The optimal policies are deter-
mined sequentially using the functional equations

p (6)
f{n) = mdax{r,-d + B>, p,-;i]]‘-(n—l)} , 1=1,...u,
=1

where the action d maximizing the right hand side
is optimal for state i at the stage in question. The
function f(n) is the total expected discounted
rewards from the process when it starts from state i
and will operate for n stages before termination.
Thus f(0) is the salvage value of the system when
it is in state i. At each stage an optimal policy is
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chosen using Egs. (6). If the objective function (1)
is used, B =1 in Eq. (6). Otherwise B is the dis-
count factor.

Under infinite planning horizon, the value iter-
ation method may be used to approximate an opti-
mal policy. Under the objective function (3) it is
possible to show that (cf. Howard 1960)

lim fi(n) = f;, i=1,...,u, 7
where f; for fixed i is a constant. By using Egs. (6)
over a large number of stages, we will sooner or
later observe that f(n+1) is almost equal to f(n) for
all i. Further we will observe that the same policy
is chosen during several stages. We can feel rather
sure that such a policy is close to be optimal, but
there is no guarantee that it is identical to an opti-
mal policy. For practical purposes, however, the
approximation usually suffices.

Since the objective function (4) is just a special
case of function (5), where m’ =1 for all i and d,
we shall only consider the criterion given by (5).
In this case f(n) is the total expected rewards when
the process starts from the beginning of a stage in
state /i and will operate until n units of physical
output have been produced. Under the criterion gi-
ven by the objective function (4), the production of
nunits of output is just the operation of the process
over n stages. It is assumed that the physical out-
put only takes integer values (for practical purpose
this is just a question of selecting an appropriate
unit). According to Howard (1971) an optimal po-
licy for producing n units of output (i.e. a policy
that maximizes the expected reward of producing
n units) is determined recursively by the relations
(i=1,...,u):

fi(n) = mdax {a(nr,-d/mf[+ f,-(O))

+ (1-a) (r;’ + ﬁ;pij(]j(n—mf))}, n=1,...

J=1

where
1, mf’zn
a =
0, mi<n.
This is under the assumption that the

reward/output rate has the constant value of r%/m/
during the entire stage. However, since the physi-
cal output is bounded, it is easily seen that for n
sufficiently large, a = 0. Hence we get for i=1,...,u
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fi(n) = mdaX {I’,d +§u; p,-fjj-(n—mf')}, largen . (8)
i=1

Thus in the long run, the assumption concerning
constant reward/output rate in all states will have
no effect. The equivalence of Eq. (7) is in this case

lim(f(n) - fi(-1) = ¢ ©)

and sooner or later the policy will not differ from
step to step of Egs. (8).

Further details on the value iteration method are
given by Howard (1960; 1971). It should particu-
larly be noticed that m¢, which in this study is in-
terpreted as a physical output (e.g. milk yield), in
the study of Howard (1971) is interpreted as the
expected stage length when state i is observed un-
der the action d. Thus in his model the criterion (5)
is the expected average reward over time. Com-
pared to Eq. (8), Howard (1971) described a more
general case where the stage length is a random
variable of which the distribution is given by the
action and the present state as well as the state to
be observed at the next stage. Further the reward
depends on the state combination, the action and
the stage length. The interpretation as physical out-
put has been discussed by Kristensen (1991).

The value iteration method is identical to what
is usually referred to as dynamic programming,
successive iteration or successive approximation.

2.3.2. Policy iteration

Under infinite planning horizon, the policy itera-
tion method may be applied. Unlike the value itera-
tion method it always provides an optimal policy.
It covers all three objective functions (3), (4) and
(5). The iteration cycle used for optimization has
the following steps:

1) Choose an arbitrary policy s. Go to 2.

2) Solve the set of linear simultaneous equations
appearing in Table 1. Go to 3.

3) For each state 7, find the action 4’ that maximi-
zes the expression given in Table 1, and put
§’(D)=d’. If s’=s then stop, since an optimal po-
licy is found. Otherwise redefine s according to
the new policy (i.e. put s=s’) and go back to 2.
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Table 1. Equations and expressions to be used in the policy iteration cycle with different objective functions.

Objective Linear equations of Step 2 Expression
function Step 3
Equation Unknowns Additional
(i=1,...,u) equation
3) fi=ri+ B B} fiods = ri+ B pif;
j=1 =1
@ g S A f=0 i+ Dl
j=1 J=1
) gmifi=r + . pif; &S, 1=0 ri-mig'+3, pif?
j=1 j=1
From the equations and expressions of Table 1, we subject to (10)

see that also with the policy iteration method the
objective function (4) is just a special case of (5)
where m; = 1 for all 7 and d. For the objective
functions (3) and (4) the policy iteration method
was developed by Howard (1960), and for the
function (5) a policy iteration method was present-
ed by Jewell (1963). Like Howard (1971), Jewell
interpreted m,” as the expected stage length.

Under Criterion (3), f is the total present value
of the expected future rewards of a process starting
in state i and running over an infinite number of
stages following the constant policy s. Under Cri-
terions (4) and (5), f; is the relative value of state i
under the policy s. The difference in relative valu-
es between two states equals the amount of money
a rational person is just willing to pay in order to
start in the highest ranking of the two states in-
stead of the lowest ranking. The absolute value
of f’ is determined arbitrarily by the additional
equation of Table 1, where the relative value of
state u is defined to be zero. The interpretation of
relative values is discussed in details by Kristensen
(1991).

2.3.3. Linear programming

Under an infinite planning horizon, linear pro-
gramming is a possible optimization technique.
When the criterion (3) is applied the linear pro-
gramming problem becomes (cf. Ross, 1970)

i
>, % = Max!
i=1

X — IBZpng =r?, alldED, i=1,...,u.
=

It appears from (10) that each combination of
state and action is represented by exactly one re-
striction. An action d is optimal in state i if, and
only if, the corresponding restriction is satisfied as
an equation when the values of x,....x, arises from
an optimal solution to the linear programming pro-
blem. The optimal values of x,,....x, are equal to
the present values f°,....f, under an optimal policy.

If the objective function (4) is applied, the linear
programming problem becomes

i
>, o rixd = Max!

i=ldeD
subject to

x{’_ p.d.x‘.i=0, i=1,....u (l”
i 777

deD  j=ldeD

i

S 3=l

i=ldeD

In this case an action d is optimal in state i if
and only if x¢ from the optimal solution is strictly
positive. The optimal value of the objective func-
tion is equal to the average rewards per stage under
an optimal policy. The optimal value of 2, x is
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equal to the limiting state probability 7, under an
optimal policy.

Using Criterion (5), we may solve the following
linear programming problem (cf. Kennedy,1986):

x, = Max!

subject to
u-1

= +le,-’ji-xj ~mix, = -r!-pia, (12)
=

deD, i=1,...,u~1

u-1

d d d d
zpujxj -mx,=-r —-p,a+a, deD
j=1
x =0, i=1,...,u,

where a is a pre-determined relative value of state
u chosen sufficiently large to ensure that all other
relative values are positive. The optimal value of
the objective function of the linear programming
problem is equal to the expected average reward
per unit of output as defined in Eq. (5) under an
optimal policy. The optimal values of the variables
XX, are equal to the relative values of the
states 1,...,u-1, provided that the relative value of
state u is equal to a . As it appears, each combina-
tion of state and action is represented by one and
only one restriction. An action is optimal in a state
if and only if the corresponding restriction is satis-
fied as an equation in the optimal solution.

Since Criterion (4) is just a special case of (5)
with all physical outputs set to the value 1, the li-
near programming problem (12) may also be used
in the determination of an optimal policy under
Criterion (4).

2.4. Discussion and applications

Under finite planning horizon, the value iteration
method is perfect, but in replacement models the
planning horizon is rarely well defined. Most often
the process is assumed to operate over an unknown
period of time with no pre-determined stage of ter-
mination. In such cases the abstraction of an infin-
ite planning horizon seems more relevant. There-
fore we shall pay specific attention to the opti-
mization problem under the criteria (3), (4) and (5)
where all three techniques described in the pre-
vious sections are available.

The value iteration method is not exact, and the
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convergence is rather slow. On the other hand, the
mathematical formulation is very simple, and the
method makes it possible to handle very large mo-
dels with thousands of states. Further it is possible
to let the reward and/or the physical output depend
on the stage number in some pre-defined way. This
has been mentioned by van Arendonk (1984) as an
advantage in modelling genetic improvement over
time. The method has been used in a lot of dairy
cow replacement models as an approximation to
the infinite stage optimum. Thus it has been used
by Jenkins and Halter (1963), Giaever (1966),
Smith (1971), McArthur (1973), Steward et al.
(1977; 1978), Killen and Kearney (1978), Ben-Ari
et al. (1983), van Arendonk (1985; 1986) and van
Arendonk and Dijkhuizen (1985). Some of the mo-
dels mentioned have been very large. For instance,
the model of van Arendonk and Dijkhuizen con-
tained 174 000 states (reported by van Arendonk,
1988). In sows, the method has been used by
Huirne et al. (1988).

The policy iteration method has almost exactly
the opposite characteristics of the value iteration
method. Because of the more complicated mathe-
matical formulation involving solution of large
systems of simultaneous linear equations, the me-
thod can only handle rather small models with,
say, a few hundred states. The solution of the line-
ar equations implies the inversion of a matrix of
the dimension u X u , which is rather complicated.
On the other hand, the method is exact and very
efficient in the sense of fast convergence. The
rewards are not allowed to depend on the stage ex-
cept for a fixed rate of annual increase (e.g. infla-
tion) or decrease. However, a seasonal variation in
rewards or physical outputs is easily modeled by
including a state variable describing season (each
state is usually defined by the value of a number of
state variables describing the system).

An advantage of the policy iteration method is
that the equations in Table 1 are general. Under
any policy s we are able to calculate directly the
economic consequences of following the policy by
solution of the equations. This makes it possible to
compare the economic consequences of various
non-optimal policies to those of the optimal.
Further we may use the equations belonging to the
criterion (5) to calculate the long run technical re-
sults under a given policy by redefining r and m; .-
If for instance r; = 1 if a calving takes place and
zero otherwise, and m.’ is the stage length when
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state i is observed under policy s, then g°, which is
the average number of calvings per cow per year,
may be determined from the equations. Further ex-
amples are discussed by Kristensen (1991). For an
example where the equations are used for calcula-
tion of the economic value of culling information,
reference is made to Kristensen and Thysen
(1991).

The policy iteration method has been used by
Reenberg (1979) and Kristensen and @stergaard
(1982). The models were very small, containing
only 9 and 177 states, respectively.

3. The curse of dimensionality: Hierarchic
Markov processes

In order to combine the computational advantages
of the value iteration method with the exactness
and efficiency of the policy iteration method Kri-
stensen (1988; 1991) introduced a new notion of a
hierarchic Markov process. It is a contribution to
the solution of the problem referred to as the “cur-
se of dimensionality” since it makes it possible to
give exact solutions to models with even very
large state spaces. A hierarchic Markov process is
only relevant under infinite planning horizon, and
there is no relevance of the criterion (4) because
the special situation where the physical output
equals 1 in all stages has no computational advan-
tages over other values. Therefore we shall only
consider the criteria (3) and (5).

3.1. Notation and terminology

A hierarchic Markov process is a series of Markov
decision processes called subprocesses built toge-
ther in one Markov decision process called the
main process. A subprocess is a finite time Mar-
kov decision process with N stages and a finite sta-
te space {2, = {1,...,u,} for stagen, 1 =n < N. The
action set D, of the nth stage is assumed to be fini-
te, too. A policy s of a subprocess is a map assig-
ning to each stage n and state i € (), an action
s(n,i) € D,. The set of all possible policies of a
subprocess is denoted I'. When the state i is obser-
ved and the action d is taken, a reward r‘(n) is
gained. The corresponding physical output is
denoted as m/(n). Let p;;(n) be the transition pro-
bability from state i to state j where i is the state at
the nth stage, j is the state at the following stage

and d is the action taken at stage n. Under the Cri-
terion (3) we shall denote the discount factor in
state { under the action d as B/(n) assuming that
the stage length is given by stage, state and action.
Assume that we have a set of v possible subpro-
cesses each having its own individual set of para-
meters. The main process is then a Markov deci-
sion process running over an infinite number of
stages and having the finite state space {1,...,v}.
Each stage in this process represents a particular
subprocess. The action sets of the main process are
the sets FL , vt = 1,...,v, of all possible policies of
the individual subprocesses (to avoid ambiguity
the states of the main process will be denoted by
Greek letters i, « etc.). A policy ¢ is a map assign-
ing to each state ¢ of the main process an action
o(t) € T'. The transition matrix of the main pro-
cess has the dimension v X v, and it is denoted
® = { ¢, }. The transition probabilities are assumed
to be independent of the action taken. The reward
/.7 and the physical output A, in state ¢ of the main
process are determined from the total rewards and
output functions of the corresponding subprocess

fim) = r}(n) , n=N

Uyl

fitn) = ri(n) + B/ (n) Z py(m)f (n+1), (13)
n=1,...N—1, /=t

and

“I

f2 =20, s=o(v),

i=1

and analogously for 4, (except for the discount
factor). The symbol p,(0) is the probability of ob-
serving state i at the first stage of the subprocess.
Finally, the expected discount factor in state ¢ un-
der the action s is denoted as B and calculated as
follows

bj(n) = Bi(n), n=N
i (14)
bi(n) = Bi(n) 2, pi(m)b’(n+1), n=1,...,N-1,
j=

and

1y

B} = 2,p(0)b}(1) .

i=1
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3.2. Optimization

Since the main process is just an ordinary Markov
decision process, the policy iteration cycle des-
cribed in Section 2.3.2 might be used directly for
optimization. In practice Steps 1 and 2 are casily
carried out, but Step 3 is prohibitive because of
the extremely large number of alternative actions
s € I', (as mentioned above s is an entire policy of
the tth subprocess). To circumvent this problem
Kristensen (1988; 1991) constructed an iterative
method, where a value iteration method is applied
in the subprocesses and the results are used in Step
3 of the policy iteration method of the main pro-
cess. The different versions of the method covers
the criteria of optimality under infinite planning
horizon defined as (3) and (5) in Section 2.2.2.
Since criterion (4) is a special case of (5) it is also
indirectly covered.

The general form of the iteration cycle of a hie-
rarchic Markov process has the following steps:
1) Choose an arbitrary policy o. Go to 2.
2) Solve the following set of linear simultaneous

equations for F,°,....F 7 and in case of Criterion

(5) for g”:

g°hl + F7 =f7+ B, b, F°, v=1,..,v.
k=1

In case of Criterion (5) the additional equation
F” =0 is necessary in order to determine a
unique solution. Go to 3.

3) Define

Y:, = ZY(:I d)mFg

under Criterion (3) and 7, = O under Criterion
(5). For each subprocess ¢, find by means of the
recurrence equations

wi(m) = max { rf(n) — mi(m)g” + BINT]
n=N

T,.(n) = m'ilx { r,?i(n) - mf’(n)g"

iy

+ B>, p,-dj(l’l)’rbj(n+l)} , n=1,...,N-1.
Jj=1 |

a policy s’ of the subprocess. The action s’(n,i)
is equal to the d’ that maximizes the right hand
side of the recurrence equation of state i at sta-
gen.Put o’(v) =s forv=1,...,v. If ¢’ = ¢, then
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stop since an optimal policy is found. Otherwi-
se, redefine o according to the new policy (i.e.
put o = 0’) and go back to 2.

When the iteration cycle is used under Criterion
(3) all physical outputs (m‘(n) and accordingly
also h”) are put equal to zero. The iteration cycle
covering this situation was developed by Kristen-
sen (1988).

Under Criterion (4) all physical outputs m/(n)
and all discount factors B%(n) and B are put equal
to 1, but under Criterion (5) only the discount fac-
tors are put equal to 1. The iteration cycle covering
these situations was described by Kristensen
(1991).

3.3. Discussion and applications

The hierarchic Markov process is specially design-
ed to fit the structure of replacement problems
where the successive stages of the subprocesses
correspond to the age of the asset in question. By
appropriate selection of state spaces in the subpro-
cesses and the main process it is possible to find
optimal solutions to even very large models. The
idea is to let the number of states in the subproces-
ses (where a value iteration technique is applied)
be very large and only include very few states in
the main process (where the technique is directly
based on the policy iteration method). Thus we
have got a method which is at the same time fast,
exact and able to handle very large models.

Kristensen (1987) used the technique in a dairy
cow replacement model which in a traditional for-
mulation as an ordinary Markov decision process
would have contained approximately 60 000 states,
and later (Kristensen, 1989) in a model with ap-
proximately 180 000 states. In both cases the num-
ber of states in the main process was only 5, re-
ducing Step 2 to the solution of only 5 simulta-
neous linear equations (versus 180 000 in a tradi-
tional formulation). Even in these very large
models the number of iterations needed to provide
an optimal solution was only from 3 to 6 (tested
under 100 different price and production condi-
tions, Kristensen, 1991). Recently, the method is
applied by Houben et al. (1992).

In sows, Huirne et al. (1992) seem to have ap-
plied a technique which in many aspects is similar
to a hierarchic Markov process, but they have not
explained their method in all details. Also Jor-
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gensen (1992a) has applied a technique which is
inspired of a hierarchic Markov process in a sow
replacement model, and recently (Jgrgensen
1992b), he used the hierarchic method in the deter-
mination of optimal delivery policies in slaughter
pigs.

Naturally the hierarchic model just described
may also be formulated as an ordinary Markov de-
cision process. In that case each combination of
subprocess (main state), stage and state should be
interpreted as a state. We shall denote a state in the
transformed process as (wni), and the parameters
are

v "
ree =rfn);
(f

wind

0= Bin) (15)

md. = min),

p};_’(n). v=k A\ m=n-1
(_)‘)u\, 7(0), n=N/\ m=1 >

0, otherwise

d —_
P{urr!:uuul -

where the parameters mentioned on the right hand
side of the equations are those belonging to the tth
subprocess except for p,(0) which belongs to sub-
process « . This formulation of course has the
same optimal policies as the hierarchic formula-
tion, so it is only computational advantages that
make the hierarchic model relevant. A comparison
to traditional methods may therefore be relevant.

Since the policy iteration method involves the
solution of a set of u equations (where u is the
number of states) it is only relevant for small mo-
dels. The value iteration method, however, has
been used with even very large models and may
handle problems of the same size as the hierarchic
formulation, but the time spent on optimization is
much lower under the hierarchic formulation. To
recognize this, we shall compare the calculations
involved.

Step 3 of the hierarchic optimization involves
exactly the same number of operations as one iter-
ation of the value iteration method (Eq. (6)). The
further needs of the hierarchic method are the cal-
culation of the rewards and either the physical
output or the expected discount factor of a stage in
the main process according to Egs. (13) and (14).
Since the calculations at each stage is only carried
out for one action, the calculation of both main
state parameters involves approximately the same

number of operations as one iteration under the
value iteration method if the number of alternative
actions is 2. If the number of actions is higher, the
calculations relatively involves a lower number of
operations than an iteration under the value iter-
ation method. These considerations are based on
the assumption that the value iteration method is
programmed in an efficient way, so that the sum of
Eq. (6) is not calculated as a sum of all u elements,
but only as a sum of those elements where p,.j" is
not zero according to Eq. (15). Otherwise the hie-
rarchic technique will be even more superior. Fi-
nally the system of linear equations of Step 2 of
the hierarchic cycle must be solved, but in large
models with only a few states in the main process
the time spent on this is negligible.

If we use the considerations above in a practical
example, the advantages of the hierarchic tech-
nique becomes obvious. As reported by Kristensen
(1991) a model with 180 000 state combinations
was optimized by the hierarchic technique under
100 different price conditions. The number of iter-
ations needed ranged from 3 to 6 corresponding to
between 6 and 12 iterations of the value iteration
method. If the latter method was used instead, a
planning horizon of 20 years would be realistic (cf.
van Arendonk 1985). Since each state in the model
equals 4 weeks, this horizon represents 260 iter-
ations, which should be compared to the equivalence
of from 6 to 12 when the hierarchic technique was
applied.

3.4. A numerical example of a hierarchic Markov
process

Consider an asset (e.g. a dairy cow) producing two
kinds of output items (I and 2, e.g. milk and beef).
We shall assume that the production level of item 1
may change stochastically over time, whereas the
production of item 2 is constant over the entire life
time of the asset (but may vary between individual
assets). At regular time intervals (stages) the asset
is inspected in order to determine the production
level of item 1. At the first inspection of the asset
the production level of item 2 is also determined.
In both cases we assume that the result may be
“bad”, “normal” or “good” (representing the pro-
duction of 5, 6 and 7 units of item 1 or 3, 4 and 5
units of item 2). After inspection we can choose to
keep the asset for at least one additional stage, or
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Table 2. Parameters of the hierarchic Markov process, subprocesses.

Sub-  Stg. St p;'(n) m/(n) rl(n) p;(n) mi(n) ri(n)
Pr.

Coon i =l j=2 =3 j=4 =1 j=2 j=3 j=4

1 | 1 06 03 01 0.0 5 7 0.0 00 00 1.0 5 5
| | 2 02 06 02 00 6 8 00 00 00 10 6 6
| | 3 0.1 03 06 00 7 9 00 00 00 10 7 7
| 1 4 0.0 00 00 1.0 0 0 0.0 00 00 1.0 0 0
| 2 1 06 03 0.1 0.0 5 6 00 00 00 10 5 4
1 2 2 02 06 02 00 6 7 0.0 00 00 10 6 5
1 2 3 0.1 03 06 00 7 8 0.0 00 00 1.0 7 6
| 2 4 0.0 00 00 1.0 0 0 00 00 00 10 0 0
| 3 1 06 03 01 0.0 5 5 0.0 00 00 10 5 3
I 3 2 02 06 02 00 6 6 00 00 00 1.0 6 4
] 3 3 0.1 03 06 00 7 il 00 00 00 1.0 7 5
| 3 4 0.0 0.0 00 1.0 0 0 0.0 00 00 10 0 0
I 4 1 ~ = - - 5 2 - - - - 5 2
| 4 2 - - - - 6 3 - - - - 6 3
I 4 3 - - - - 7 4 - - - — 7 4
1 4 4 - - - - 0 0 - - - - 0 0
2 I 1 0.6 03 0.1 0.0 5 8 00 00 00 1.0 5 6
2 ] 2 02 06 02 0.0 6 9 0.0 00 00 1.0 6 7
2 1 3 0.1 03 06 00 7 10 00 00 00 1.0 7 8
2 I 4 00 00 00 1.0 0 0 0.0 00 00 1.0 0 0
2 2 1 06 03 01 00 5 7 00 00 00 1.0 5 5
2 2 2 02 06 02 00 6 8 00 00 00 1.0 6 6
2 2 3 0.1 03 06 0.0 7 9 00 00 00 1.0 7 7
2 2 4 00 00 00 1.0 0 0 00 0.0 00 1.0 0 0
2 3 1 06 03 01 0.0 5 6 00 00 00 1.0 5 4
2 3 2 02 06 02 00 6 7 0.0 00 00 1.0 6 5
2 3 3 0.1 03 06 00 7 8 0.0 00 00 1.0 L 6
2 3 4 0.0 0.0 00 1.0 0 0 00 00 00 1.0 0 0
2 4 1 - - - - 5 3 - E - 5 3
2 4 2 - - - - 6 4 - - - - 6 4
2 4 3 - - - - 7 5 - - - - 7 5
2 4 4 - - - - 0 0 - - - - 0 0
3 | 1 06 03 01 00 5 9 0.0 00 00 1.0 5 7
3 | 2 02 06 02 00 6 10 00 00 00 10 6 8
3 | 3 02 03 06 00 7 11 00 00 00 1.0 7 9
3 I 4 00 00 00 1.0 0 0 0.0 00 00 1.0 0 0
3 2 1 06 03 01 00 5 8 00 00 00 1.0 5 6
3 2 2 02 06 02 00 6 9 0.0 00 00 10 6 7
3 2 3 01 03 06 00 7 10 00 00 00 1.0 7 8
3 2 4 0.0 00 00 1.0 0 0 00 00 00 1.0 0 0
3 3 1 06 03 01 00 5 7 00 00 00 1.0 5 5
3 3 2 02 06 02 00 6 8 0.0 00 00 1.0 6 6
3 3 3 01 03 06 00 7 9 00 00 00 1.0 7 7
3 3 4 00 00 00 10 0 0 00 00 00 10 0 0
3 4 _ 2 2D s 4 - 2D s 4
3 4 2 - - -~ 6 5 - - -~ 6 5
3 4 3 I 6 - - - -7 6
3 4 4 - - = =0 0 ) 0

24



A.R. Kristensen /A survey of Markov decision programming techniques

we can choose to replace it at the end of the stage
at some additional cost.

The three classes of production level of item 2
are defined as states in the main process of a hie-
rarchic Markov process. Thus the number of sub-
processes is also 3 and each subprocess represents
an asset of a certain productivity concerning item
2. When a new asset is purchased, we assume that
the probability distribution over main states is uni-
form, so that the probability of entering either one
is 1/3. The maximum age of an asset is assumed to
be 4 stages, and the states of the subprocess are de-
fined from the productivity concerning item 1.
Further a dummy state of length, reward and out-
put equal to O is included at each stage of the sub-
processes. If the asset is replaced at the end of a
stage, the process enters the dummy state with pro-
bability 1 at the next stage, and for the rest of the
duration of the subprocess it will stay in the dum-
my states.

For all subprocesses we assume that, if the asset
is kept, the probability of staying at the same pro-
ductivity level (state in the subprocess) concerning
item 1 is 0.6, and if the present state is “normal”,
the probability of transition to either “bad” or
“good” is 0.2 each. The probability of transition (if
kept) from “bad” or “good” to “normal” is in both
cases 0.3, and from “bad” to “good” and vice versa
the probability is 0.1. The initial state probabilities
of the subprocesses are assumed to depend on the
subprocess in such a way that for subprocess num-
ber 1 (low productivity of item 2) the probabilities
of entering state “bad”, “normal” and “good” are
0.6, 0.3 and 0.1 respectively. For subprocess num-
ber 2 the corresponding probabilities are 0.2, 0.6
and 0.2 and finally for subprocess number 3 they
are 0.1, 0.3, 0.6.

Table 3.
probabilities of subprocesses

The physical output m(n) of state i at stage n of
subprocess number ¢ is equal to the production of
item 1 under the action d, and the corresponding
rewards are assumed to be defined as follows:

d _ d d —
ri(n) = emi + ok, — ¢, —c§, 1=1,2,3,

n 16
n=1,...,4, i=1,...4, d=1,2, (9

where ¢, is the price of item 1, c, is the price of
item 2, ¢, is the cost of operating the asset at the
age n, k_is the production of item 2 in subprocess
(main state) number ¢ and c, is the replacement
cost which is zero if no replacement takes place.
The cost of operating the asset is assumed to in-
crease linearly from 1 to 4 over stages. Defining c,
=¢, =1 and ¢;* = 2 gives us the final parameters
appearing in Tables 2 and 3. All stages (except
those where the process is in a dummy state of
zero length) are assumed to be of equal length,
which we for convenience put equal to 1.

We shall determine an optimal solution under
the following 3 criteria of optimality:

1) Maximization of total expected discounted
rewards, i.e., the objective function (3). In
this case the physical outputs of Table 2 are ig-
nored, and a discount factor B/(n) = exp(-r),
where r is the interest rate, is applied (for states
where the stage length is not zero).

2) Maximization of average rewards over time. In
this situation we use the objective function (5)
letting the output represent stage length. No
discounting is performed in this case.

3) Maximization of average rewards over output
defined as in Table 2. Thus the objective function
(5) is applied, and no discounting is performed.

Parameters of the hierarchic process. Transition probabilities of main process and initial state

Transition probabilities, main process

Initial state probabilities, subprocesses

Main state o, p(0)
L
k=1 k=2 K=3 i=1 i=2 i=3 i=4
1 173 1/3 1/3 0.6 0.3 0.1 0.0
2 173 1/3 173 0.2 0.6 0.2 0.0
3 1/3 173 1/3 0.1 0.3 0.6 0.0
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Table 4. Optimal policies under the three criteria (c1, ¢2, ¢3) defined in the text (actions:1="keep", 2="replace®).

Subprocess Stage State 1 State 2 State 3

cl ¢2 c3 cl ¢2 c3 cl ¢2 3
1 1 2 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 2
1 3 2 2 2 2 2 2 2 2 2
2 1 2 2 1 1 1 1 1 1 2
2 2 2 2 2 2 2 2 2 2 2
2 3 2 2 2 2 2 2 2 2 2
3 1 1 1 1 1 1 1 11 1
3 2 2 2 1 1 1 1 1 1 2
3 3 2 2 2 2 2 2 2 2 2

In Table 4, optimal policies under the three criteria
are shown. It appears that the same policies are op-
timal under the first two criteria, but under the
third criterion the optimal policy differs. A more
detailed example of the effect of criterion of opti-
mality was discussed by Kristensen (1991).

In order to compare the efficiency of the hie-
rarchic technique to the traditional policy and value
iteration methods, the problem of the example was
transformed to an ordinary Markov decision pro-
cess and optimized by those methods. The trans-
formed model has 3 X 4 X 4 = 48 states,
which is not larger than the policy iteration method
may be applied without problems. In Table 5 some
performance data of the three optimization tech-
niques are compared.

The superiority of the hierarchic technique over
the policy iteration method is due mainly to the
time spent on solving the linear simultaneous
equations of Step 2. In the hierarchic case a system
of 3 equations is solved, whereas 48 equations are
solved under the ordinary policy iteration method.

In this numerical example the performance of
the hierarchic technique is even more superior to
the value iteration method than expected from the
theoretical considerations of Section 3.3. In the
present case an iteration of the hierarchic model is
performed even faster than one of the value itera-
tion method applied to the same (transformed) mo-
del. The reason is that the value iteration algorithm
has not been programmed in the most efficient
way as defined in Section 3.3. On the contrary, the
sum of Eq. (6) has been calculated over all 48
states of the transformed model. Since only 4
transition probabilities from each state are positi-
ve, the sum could be calculated only over these 4
states.

4. Uniformity: Bayesian updating

As discussed earlier, it is obvious that the traits of
an animal varies no matter whether we are consi-
dering the milk yield of a dairy cow, the litter size

Table 5. The performance of the hierarchic technique compared to the policy and value iteration methods
under the three criteria (c1, ¢2, ¢3) defined in the text.

Hierarchic model

Policy iteration Value iteration

cl c2 c3 cl c2 c3 cl c2 c3
Number of iterations 4 3 3 3 4 3 100 100 100
Computer time, relativity 1 082 077 120 150 120 62 64 63
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of a sow or almost any other trait. On the other
hand, it is not obvious to what extent the observed
trait Y, at stage n is, for instant, the result of a per-
manent property of the animal X, a permanent da-
mage caused by a previous disease X, or a tempo-
rary random fluctuation e,. Most often the observed
value is the result of several permanent and ran-
dom effects. With ¥, X, X, and ¢, defined as abo-
ve the relation might for instance be

Y”:m+X]+aX2+en, a7

where m is the expected value for an arbitrarily se-
lected animal under the circumstances in question,
and a = -1 if the animal has been suffering from
the disease, and a = 0 otherwise. In this example
X, only varies among animals, whereas e, also va-
ries over time for the same animal. The effect of
the damage caused by the disease X, is in this ex-
ample assumed to be constant over time when it
has been “switched on”. The value of X, is a pro-
perty of the individual disease case (the “severity”
of the case).

In a replacement decision it is of course impor-
tant to know whether the observed value is mainly
a result of a permanent effect or it is just the result
of a temporary fluctuation. The problem, however,
is that only the resulting value Y, is observed,
whereas the values of X|, X, and ¢, are unknown.
On the other hand, as observations of Y|, ¥,,... are
done we are learning something about the value of
the permanent effects. Furthermore, we have got a
prior distribution of X, and X,, and each time an
observation is done, we are able to calculate the
posterior distribution of X, and X, by means of the
Kalman-filter theory (described for instance by
Harrison and Stevens, 1976) if we assume all ef-
fects to be normally distributed.

A model as described by Eq. (17) fits very well
into the structure of a hierarchic Markov process.
Thus we may regard Y, as a state variable in a sub-
process, and the permanent effects X, and X, as
state variables of the main process. We then face a
hierarchic Markov process with wunobservable
main state. Kristensen (1993) discusses this notion
in details, and it is shown that under the assump-
tion of normally distributed effects, we only have
to keep the present expected values of X, and X,,
the currently observed value of Y, and (in this ex-
ample) the number of stages since the animal was
suffering from the disease (if it has been suffering

from the disease at all). The expectations of X, and
X, are sufficient to determine the current posterior
distribution of the variables, because the variance
is known in advance. Even though the posterior
variance decreases as observations are done, the
decrease does not depend on the values of Y, Y,,...
but only on the number of observations done.

In the study of Kristensen (1993), a more gene-
ral case involving several traits each being influen-
ced by several unobservable effects is sketched,
and a numerical example involving only a single
trait is given. An example concerning replacement
of sows has been given by Jgrgensen (1992a). It
was demonstrated in both studies that the Bayesian
approach in some cases may result in state space
reduction without loss of information.

5. Herd restraints: Parameter iteration

One of the major difficulties identified in the intro-
duction was herd restraints. All the replacement
models mentioned in the previous sections have
been single-component models, i.e., only one ani-
mal is considered at the same time, assuming an
unlimited supply of all resources (heifers or gilts
for replacement, feed, labour etc) and no produc-
tion quota. In a multi-component model all animals
of a herd are simultaneously considered for
replacement. If all animals (components) compete
for the same limited resource or quota, the replace-
ment decision concerning an animal does not only
depend on the state of that particular animal, but
also on the states of the other animals (compo-
nents) of the herd.

If the only (or at least the most limiting) herd re-
straint is a limited housing capacity, the number of
animals in production is the scarce resource, and
accordingly the relevant criterion of optimality is
the maximization of net revenues per animal as it
is expressed in the criteria (1), (2), (3) and (4).
Thus the optimal replacement policy of the single
component model is optimal for the multi-compo-
nent model too.

If the only (or most limiting) herd restraint is a
milk quota, the situation is much more compli-
cated. Since the most limiting restriction is a fixed
amount of milk to produce, the relevant criterion
of optimality is now the maximization of average
net revenues per kg milk yield as expressed in
criterion (5), because a policy that maximizes net
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revenues per kg milk will also maximize total net
revenues from the herd which was assumed to be
the objective of the farmer.

By following a policy which is optimal accord-
ing to criterion (5) we assure at any time that the
cows which produce milk in the cheapest way are
kept. Thus the problem of selecting which cows to
keep in the long run (and the mutual ranking of
cows) is solved, but the problem of determining
the optimal number of cows in production at any
time is not solved. If for instance, it is recognized
2 months before the end of the quota year that the
quota is expected to be exceeded by 10 percent, we
have to choose whether to reduce the herd size or
to keep the cows and pay the penalty. The problem
is that both decisions will influence the possibili-
ties of meeting the quota of the next year in an op-
timal way. To solve this short run quota adjustment
problem we need a true multi-component model.

An other example of a herd restraint is a limited
supply of heifers. If the dairy farmer only uses
home-grown heifers for replacement, the actions
concerning individual cows become inter-depen-
dent, and again a multi-component model is
needed in order to solve the replacement problem.
Ben-Ari and Gal (1986) and later Kristensen
(1992) demonstrated that the replacement problem
in a dairy herd with cows and a limited supply of
home grown heifers may be formulated as a Mar-
kov decision process involving millions of states.
This multi-component model is based on a usual
single-component Markov decision process repre-
senting one cow and its future successors. Even
though the hierarchic technique has made the solu-
tion of even very large models possible, such a
model is far too large for optimization in practice.
Therefore, the need for an approximate method
emerged, and a method called parameter iteration
was introduced by Ben-Ari and Gal (1986).

The basic idea of the method is to approximate
cither the present value function f(n) (objective
function (3)) or the relative values f (objective
functions (4) and (5)) by a function G involving a
set of parameters a,,...,a,, to be determined in such
a way that G(i,a,,....a,) = f(n) or G(i,a,,....a,) = f’.

In the implementation of Ben-Ari and Gal
(1986) the parameters were determined by an iter-
ative technique involving the solution of sets of si-
multaneous linear equations generated by simula-
tion.

In a later implementation Kristensen (1992) de-
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termined the parameters by ordinary least squares
regression on a simulated data set. The basic idea
of the implementation is to take advantage from
the fact that we are able to determine an optimal
solution to the underlying (unrestricted) single-
component model. If no herd restraint was present,
the present value of the multi-component model
would equal the sum of the present values of the
individual animals determined from the underlying
single-component model. Then it is argued in what
way the restraint will logically reduce the (multi-
component) present value, and a functional expres-
sion having the desired properties is chosen. The
parameters of the function are estimated from a
simulated data set, and the optimal action for a gi-
ven (multi-component) state is determined as the
one that maximizes the corrected present value. (A
state in the multi-component model is defined
from the states of the individual animals in the
single-component model, and an action defines the
replacement decision of each individual animal).

Ben-Ari and Gal (1986) compared the economic
consequences of the resulting optimal multi-com-
ponent policy to a policy defined by dairy farmers,
and they showed that the policy {rom the parame-
ter iteration method was better. Kristensen (1992)
compared the optimal multi-component policies to
policies from usual single-component models in
extensive stochastic simulations and showed that
the multi-component policies were superior in
situations with shortage of heifers.

The parameter iteration method has been ap-
plied under a limited supply of heifers. It seems to
be realistic to expect, that the method and the basic
principles of Kristensen (1992) may be used under
other kinds of herd restraints as for instance the
short time adjustment to a milk quota as mentioned
above.

6. General discussion

In the introduction, the main difficulties of the ani-
mal replacement problem were identified as varia-
bility in traits, cyclic production, uniformity (the
traits are difficult to define and measure) and herd
restraints. We are now able to conclude that the
difficulties of variability and the cyclic production
are directly solved by the application of Markov
decision programming, but when the variability of
several traits are included we face a problem of di-
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mensionality. The formulation of the notion of a
hierarchic Markov process contributed to the solu-
tion of the dimensionality problem, but did not
solve it. The upper limit of number of states to be
included has been raised considerably, but not
eliminated.

This is for instance clearly illustrated when we
formulate multi-component herd models in order to
deal with herd restraints. In that case we still have
to use approximate methods to determine an “op-
timal” replacement policy. On the other hand it has
been demonstrated by Kristensen (1992) that the
parameter iteration method applied to a multi-
component herd model (even though it is only ap-
proximate) is able to improve the total net revenue
compared to the application of a usual single-com-
ponent (animal) model in a situation with shortage
of heifers. The parameter iteration method is an
important contribution to the problem of determin-
ing optimal replacement policies under herd re-
straints.

In other situations with a limiting herd restraint
it may be relevant to use an alternative criterion of
optimality maximizing average net revenue per
unit of the limiting factor. This method has been
successfully applied in a situation with milk pro-
duction under a limiting quota.

Recent results have also contributed to the solu-
tion of the uniformity problem. The Bayesian
updating technique described in Section 4 seems to
be a promising approach, but it has not yet been
tested on real data. It might be a solution to the
problem of including animal health as a trait to be
considered. The problem of including diseases in
the state space has never been solved, but at pre-
sent Houben et al. (1992) are working on it. As con-
cemns other traits such as litter size or milk yield
the Bayesian approach may in some cases result in
a reduction of the state space without loss of infor-
mation (Jgrgensen, 1992a; Kristensen, 1993). Thus
it contributes indirectly to the solution of the di-
mensionality problem.
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