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Introduction

In the late fifties Bellman (1957) published a book
entitled “Dynamic Programming”. In the book he
presented the theory of a new numerical method
for the solution of sequential decision problems.
The basic elements of the method are the “Bellman
principle of optimality” and functional equations.
The idea may be illustrated as follows.

Consider a system being observed over a finite
or infinite time horizon split up into periods or sta-
ges. At each stage, the state of the system is obser-
ved, and a decision (or an action) concerning the
system has to be made. The decision influences
(deterministicly or stochastically) the state to be
observed at the next stage, and depending on the
state and the decision made, an immediate reward
is gained. The expected total rewards from the pre-
sent stage until the end of the planning horizon is
expressed by a value function. The relation be-
tween the value function at the present stage and
the one at the following stage is expressed by the
Junctional equation. Optimal decisions depending
on stage and state are determined backwards step
by step as those maximizing the right hand side of
the functional equation. This way of determining
an optimal policy is based on the Bellman prin-
ciple of optimality which says: “An optimal policy
has the property that whatever the initial state and
initial decision are, the remaining decisions must
constitute an optimal policy with regard to the sta-
te resulting from the first decision” (Bellman, 1957
p. 83).

During the following years Bellman published
several books on the subject (Bellman, 1961; Bell-
man and Dreyfus, 1962; Bellman and Kalaba,
1965). The books were very enthusiastic, and the
method was expected to be the solution to a very
wide range of decision problems of the real world.
The expectations were so great, and they were ad-
duced with such a conviction, that Johnston (1965)
ironically compared dynamic programming to a
new religion. Others regarded the method as a
rather trivial computational device.

Similar stories might be told regarding other
new numerical methods, as for instance linear pro-

gramming. However, after some years, the applica-
tional scopes of the methods are encircled. Most
often the conclusion is that the method is neither
an all-embracing technique nor a triviality. Be-
tween these extremities a rather narrow range of
problems remains where it is a powerful tool.
Other problems are, in some cases, not suitable to
be solved by the method. In other cases alternative
methods are better.

This also turned out to be the case in dynamic
programming. One of the basic elements of dy-
namic programming is the sequential approach,
which means that it fits sequential decision pro-
blems best. An obvious example of a sequential
decision problem is the replacement problem. If an
asset is used in a production process it is relevant
to consider at regular time intervals whether the
present asset should be replaced or it should be
kept for an additional period. Thus dynamic pro-
gramming is a relevant tool, but if the traits of the
asset are well defined and their precise behavior
over time is known in advance, there are other
methods that might be applied to determine the op-
timal replacement time analytically. On the other
hand, if the traits of the asset are affected by ran-
dom variation over time and among assets (as it is
the case when the asset is an animal), the replace-
ment decision will depend on the present observa-
tions of the traits. In that case dynamic program-
ming is an obvious technique to be used in the de-
termination of an optimal replacement policy.

Having identified dynamic programming as a
relevant method to be used with the animal re-
placement problem, we shall continue on the hi-
storical development. In 1960 Howard published a
book on “Dynamic Programming and Markov Pro-
cesses”. As will appear from the title, the idea of
the book was to combine the dynamic program-
ming technique with the mathematically well
established notion of a Markov chain. A natural
consequence of the combination was to use the
term Markov decision process to describe the no-
tion. Howard (1960) also contributed to the solution
of infinite stage problems, where the policy itera-
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tion method was created as an alternative to the
stepwise backward contraction method, which
Howard called value iteration. The policy iteration
was a result of the application of the Markov chain
environment and it was an important contribution
to the development of optimization techniques.

The policy iteration technique was developed
for two crileria of optimality, namely maximiza-
tion of total expected discounted rewards and maxi-
mization of expected average rewards per stage.
Later on, Jewell (1963) presented a policy iteration
technique for the maximization of average rewards
over time for semi-Markov decision processes,
which are Markov decision processes of which the
stage length is a random variable. Howard (1971)
presented a value iteration method for semi-Mar-
kov decision processes.

For the sake of completeness it should also be
mentioned that linear programming was early
identified as an optimization technique to be appli-
ed to Markov decision processes as described by,
for instance, Hadley (1964), but no animal replace-
ment models known to the author have applied that
technique. This is in accordance with a conclusion
of White and White (1989) that policy iteration
(except in special cases) is more efficient than
linear programming.

Since the publication of the first mentioned
book by Howard (1960) an intensive research in
Markov decision programming has been carried
out. Many results have been achieved concerning
the relations between the various optimization
techniques and criteria of optimality. Reviews of
these developments are given by van der Wal and
Wessels (1985) as well as White and White (1989).

Already three years after the book by Howard
(1960), an application to the dairy cow replace-
ment problem was published by Jenkins and Halter
(1963). Their model only included the trait “lacta-
tion number” (at 12 levels), and the permanent
value of the study was only to illustrate that Mar-
kov decision programming is a possible tool to be
applied to the problem. A few years later, however,
Giaever (1966) published a study which represents
a turning-point in the application of the method to
the animal (dairy cow) replacement problem. He
considered all three optimization techniques (value
iteration, policy iteration and linear programming),
described how to ensure that all mathematical con-
ditions were satisfied, and presented an eminent
model to describe the production and feed intake
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of a dairy cow. The work of Giaever (1966) has
not got the credit in literature that it deserves
(maybe because it is only available on microfilm).
In a review by van Arendonk (1984) it is not even
mentioned.

During the following 20 years, several dairy
cow replacement models using Markov decision
programming were published, but from a methodo-
logical point of view none of them have contribut-
ed anything new compared to Giaever (1966). Se-
veral studies, however, have contributed in other
ways. Smith (1971) showed that the rather small
model of Giaever (1966) with 106 states did not
represent the upper limit. His state space included
more than 15 000 states. Kristensen and ster-
gaard (1982) as well as van Arendonk (1985;
1986) and van Arendonk and Dijkhuizen (1985)
studied the influence of prices and other conditions
on the optimal replacement policy. Other studics
(Killen and Kearney, 1978; Reenberg, 1979) hard-
ly reached the level of Jenkins and Halter (1963).
Even though the sow replacement problem is al-
most identical to that of dairy cows, very few stu-
dies on sows have been published. The only ex-
ceptions known to the author are Huirne (1990)
and J@rgensen (1992).

A study of Ben-Ari et al. (1983) deserves speci-
al attention. As regards methodology it is not re-
markable, but in that study the main difficulties of
the animal replacement problem were identified
and clearly formulated. Three features were men-
tioned:

1) Uniformity. The traits of an animal are difficult
to define and measure. Furthermore the random
variation of each trait is relatively large.

2) Reproductive cycle. The production of an
animal is cyclic. It has to be decided in which
cycle to replace as well as when to replace in-
side a cycle.

3) Availability. Only a limited supply of replace-
ments (heifers or gilts) is available.

The first feature in fact covers two different aspects,
namely uniformity because the traits are difficult to
define and measure, and variability because the
traits vary at random among animals and over
time. The third feature is an example of a herd re-
straint, i.c. a restriction that applies to the herd as a
whole and not to the individual animal. Other ex-
amples of herd restraints are a production quota or
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a limited housing capacity. We shall therefore con-
sider the more general problem of herd restraints.

We may conclude that when the research pre-
sented in this thesis was initiated, the methodologi-
cal level concerning the application of Markov de-
cision programming to the animal replacement
problem was represented by Giacver (1966). The
main difficulties that the method should overcome
had been identified by Ben-Ari et al. (1983). If we
compare the approach of Giaever (1966) to the dif-
ficulties that it ought to solve, we may conclude
that the problems related to variability are directly
solved, and as it has been shown by Kristensen and
Ostergaard (1982) as well as van Arendonk
(1985), the problems concerning the cyclic produc-
tion may readily be solved without any methodo-
logical considerations. The only problem concern-
ing variability and cyclic production is that to co-
ver the variability the state variables (traits) have
to be represented by many levels, and to deal with
the cyclic production a state variable representing
the stage of the cycle has to be included. Both
aspects contributes significantly to an explosive
growth of the state space. We therefore face a di-
mensionality problem. Even though all necessary
conditions of a Markov decision process are met,
the solution in practice is prohibitive even on mo-
dern computers. The problems concerning unifor-
mity and herd restraints are not solved by the ap-
proach of Giaever (1966).

The purpose of this thesis is to adapt the Mar-
kov decision programming techniques to be able to
cope with the animal replacement problem in a sa-
tisfactory way. The problems to be solved (totally
or partially) have been identified as the dimension-
ality problem, the uniformity problem and the
problems caused by herd restraints. A secondary
purpose is to illustrate and discuss the applicatio-
nal perspectives of the techniques. All numerical
results of the thesis refer to dairy cows, but recent-
ly Markov decision programming has also been
applied to sows (Huirne, 1990; Jgrgensen, 1992).
Since the sow replacement problem does not differ
very much from that of dairy cows, the same me-
thodological problems arise, and the results of this
thesis are therefore relevant in sow replacement
models too.

In Chapter II a systematic survey of the devel-
oped techniques is given. In Chapters III-VIII the
individual techniques are described in details. The
applicational perspectives are discussed in Chapter

IX, and Chapters X and XI are examples of such
applications.
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A survey of Markov decision programming
techniques applied
to the animal replacement problem'

ANDERS RINGGAARD KRISTENSEN
Department of Animal Science and Animal Health The Royal Veterinary and Agricultural University,
Rolighedsvej 23, DK-1958 Frederiksberg C, Copenhagen, Denmark

Abstract

The major difficulties of the animal replacement problem are identified as uniformity, herd restraints and
the “curse of dimensionality”. Approaches for circumventing these difficulties using Markov decision pro-
gramming methods are systematically discussed, and possible optimization techniques are described and
evaluated. Assuming that the objective of the farmer is maximum net returns from the entire herd, relevant
criteria of optimality are discussed. It is concluded that a Bayesian technique is a promising approach as
concerns the uniformity problem, that parameter iteration may be used under herd restraints, and that hie-

rarchic Markov processes has contributed to the solution of the dimensionality problem.

Keywords: Criteria of optimality, hierarchic Markov process, parameter iteration, Bayesian updating.

1. Introduction

This paper deals with a problem and a technique.
The problem is the determination of optimal repla-
cement of animals (in practice limited to cows and
sows). The technique is dynamic programming or,
to be more specific, Markov decision program-
ming. The literature on the replacement problem in
general is very extensive. Studies on the animal
replacement problem are also numerous, but natu-
rally they are fewer than for the general problem.
A review of studies on dairy cow replacement is
given by van Arendonk (1984). Also on Markov
decision programming the literature is extensive.
Recent reviews are given by van der Wal and Wes-
sels (1985) as well as White and White (1989). A
review of applications to agriculture has been
given by Kennedy (1981).

Since both the problem and the technique dis-
cussed in this paper seem to be well elucidated in
the literature, a relevant question to ask would be
why the combination of the problem and the tech-

! This research was carried out as part of Dina, Danish Infor-
matics Network in the Agricultural Sciences

nique should be the subject of a survey. The ans-
wer is that animal replacement problems differ
from general replacement problems in several re-
spects, and in order to deal with the problems aris-
ing from this observation many modifications of
the general Markov decision programming tech-
nique are relevant or even necessary.

The general replacement theory most often im-
plicitly assumes industrial items as the objects of
replacement. Ben-Ari et al. (1983) mention three
main features in which the dairy cow replacement
problem differs from the industrial problem. Ex-
actly the same features are relevant in sow replace-
ment models.

— Uniformity. It is a problem that the traits of an
animal are difficult to define and measure.
Furthermore the variance of each trait is relati-
vely large.

— Reproductive cycle. The production of an animal
is cyclic. We therefore need to decide in which
cycle to replace as well as when to replace insi-
de a cycle.

— Availability. Usually there is a limited supply of
replacements (heifers or gilts). This is particu-
larly the case when the farmer only uses home-

15
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grown animals — for instance because of infecti-
on risks when animals are bought at the market.

The problem of availability is only one example of
a restraint that applies to the herd as a whole.
Other examples might be a milk quota, a limited
supply of roughages or limiting housing capacity.
In all cases the animals considered for replacement
compete for the resource (or quota) in question.
We shall therefore in this study consider the more
general problem of optimal replacement under
some herd restraint.

The main reason for using Markov decision pro-
gramming in the determination of optimal animal
replacement policies is probably the variation in
traits, which with this technique is taken into ac-
count directly. Also the cyclic production may be
directly considered by traditional Markov decision
programming. Very soon, however, a problem of
dimensionality is faced. If several traits of the ani-
mal are considered simultancously, and each trait
is considered at a realistic number of levels, the
state space becomes very large (the size of the
state space is in principle calculated as the number
of traits times the number of levels of each). Even
though the method in theory can handle the pro-
blem, optimization is prohibitive even on modern
computers. In literature, the problem is referred to
as the “curse of dimensionality”.

The objective of this study is to discuss how the
technique (Markov decision programming) may be
adapted to solve the problem (the animal replace-
ment problem), where uniformity and herd restra-
ints as well as the curse of dimensionality (arising
from the variability in traits and the cyclic pro-
duction) have been identified as major difficulties
to be taken into account. During the decade since
the reviews of Kennedy (1981) and van Arendonk
(1984) were written, many results have been achiev-
ed concerning these difficulties.

We shall assume throughout the study that the
objective of the farmer is the maximization of net
revenue from the entire herd. In each situation, we
shall consider how this objective may be transfor-
med to a relevant criterion of optimality to be used
in the Markov decision process.

16

2. Variability and cyclic production: Markov
decision programming

As mentioned in the introduction, Markov decision
programming is directly able to take the variability
in traits and the cyclic production into account
without any adaptations. In order to have a frame
of reference, we shall briefly present the theory of
traditional Markov decision programming original-
ly described by Howard (1960).

2.1. Notation and terminology

Consider a discrete time Markov decision process
with a finite state space U = {1,2,...,u} and a finite
action set D. A policy s is a map assigning to each
state i an action s(i) € D. Let p,.j" be the transition
probability from state i to state j if the action d €
D is taken. The reward to be gained when the state
i is observed, and the action d is taken, is denoted
as r/. The time interval between two transitions is
called a stage.

We have now defined the elements of a traditio-
nal Markov decision process, but in some models
we further assume that if state i is observed, and
action d is taken, a physical quantity of m is in-
volved (e.g. Kristensen, 1989; 1991). In this study
we shall refer to m/ as the physical output. If s(i) =
d, the symbols r, m* and p, are also written as r?,
m; and p,’, respectively.

An optimal policy is defined as a policy that
maximizes (or minimizes) some predefined objec-
tive function. The optimization technique (i.e. the
method to identify an optimal policy) depends on
the form of the objective function or — in other
words — on the criterion of optimality. The over-all
objective to maximize net revenue of the entire
herd may (depending on the circumstances) result
in different criteria of optimality formulated as al-
ternative objective functions. The choice of crite-
rion depends on whether the planning horizon is
finite or infinite.

2.2. Criteria of optimality
2.2.1. Finite planning horizon
A farmer, who knows that he is going to terminate

his production after N stages, may use the maxi-
mization of total expected rewards as his criterion
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of optimality. The corresponding objective functi-
onhis

N
h(s's ™ = B(D0 ) s (1)

n=1

where E denotes the expected value, s" is the poli-
cy at stage n, and I(n) is the (unknown) state at
stage n.

If the farmer has a time preference, so that he
prefers an immediate reward to an identical reward
later on, a better criterion is the maximization of
total expected discounted rewards. If all stages are
of equal length, this is equal to applying the ob-
jective function

N
h(Sl,...,S N) =i E( ZB“‘I’F;(H)) ? (2)

n=I

where 8 < 1 is the discount factor defined by the
interest rate and the stage length.

2.2.2. Infinite planning horizon

A situation where the stage of termination is
unknown (but at least far ahead) is usually model-
ed by an infinite planning horizon (i.e. N = ©). In
that case the optimal policy is constant over stages.
The function (1) cannot be applied in this situ-
ation, but since 8 < 1, the function (2) will con-
verge towards a fixed value for N becoming very
large. Thus the objective function is given by

h(s) = ECY, B 1) 3)

n=1

Since, usually, each animal and its future suc-
cessors are represented by a separate Markov deci-
sion process, this criterion together with the crite-
rion (2), are equal to the maximization of total dis-
counted net revenues per animal. Such a criterion
is relevant in a situation where a limiting housing
capacity is the only (or at least the most limiting)
herd restraint.

An alternative criterion under infinite planning
horizon 1is the maximization of expected average
reward per unit of time. If all stages are of equal
length, the objective function in this situation is

h(s) =g =D, wir}, )

i=1

where 7 is the limiting state probability under the
policy s (i.e. when the policy is kept constant over
an infinite number of stages). This criterion max-
imizes the average net revenues per stage, i.e. over
time. It may be relevant under the same conditions
as criterion (3) if an animal and its future succes-
sors are represented by a separate Markov decision
process. Practical experience shows that the opti-
mal replacement policies determined under criteria
(3) and (4) are almost identical.

If a herd restraint (e.g. a milk quota) is imposed
on the physical output, a relevant criterion may be
the maximization of expected average reward per
unit of physical output using the objective function

s Z"Tis”fs
8r i=1
h(s)=g'=—=—"—. &)

gs it
m z T ism;v
=1

In case of a milk quota, the physical output m;}
is the milk produced by a cow in state i under poli-
cy s. The function (5) is also relevant if the crite-
rion is the maximization of the expected average
reward over time in a model where the stage
length varies. In that case the physical output re-
presents the stage length. It should be noticed that
if m? =1 for all i and d, the function (5) is identi-
cal to (4). The symbol g is the average reward
over stages (equal to g* of Eq. (4)) and g,* is the
average physical output over stages.

2.3. Optimization techniques in general Markov
decision programming

2.3.1. Value iteration

Under finite planning horizon the value iteration
method is excellent. The optimal policies are deter-
mined sequentially using the functional equations

p (6)
f{n) = mdax{r,-d + B>, p,-;i]]‘-(n—l)} , 1=1,...u,
=1

where the action d maximizing the right hand side
is optimal for state i at the stage in question. The
function f(n) is the total expected discounted
rewards from the process when it starts from state i
and will operate for n stages before termination.
Thus f(0) is the salvage value of the system when
it is in state i. At each stage an optimal policy is
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chosen using Egs. (6). If the objective function (1)
is used, B =1 in Eq. (6). Otherwise B is the dis-
count factor.

Under infinite planning horizon, the value iter-
ation method may be used to approximate an opti-
mal policy. Under the objective function (3) it is
possible to show that (cf. Howard 1960)

lim fi(n) = f;, i=1,...,u, 7
where f; for fixed i is a constant. By using Egs. (6)
over a large number of stages, we will sooner or
later observe that f(n+1) is almost equal to f(n) for
all i. Further we will observe that the same policy
is chosen during several stages. We can feel rather
sure that such a policy is close to be optimal, but
there is no guarantee that it is identical to an opti-
mal policy. For practical purposes, however, the
approximation usually suffices.

Since the objective function (4) is just a special
case of function (5), where m’ =1 for all i and d,
we shall only consider the criterion given by (5).
In this case f(n) is the total expected rewards when
the process starts from the beginning of a stage in
state /i and will operate until n units of physical
output have been produced. Under the criterion gi-
ven by the objective function (4), the production of
nunits of output is just the operation of the process
over n stages. It is assumed that the physical out-
put only takes integer values (for practical purpose
this is just a question of selecting an appropriate
unit). According to Howard (1971) an optimal po-
licy for producing n units of output (i.e. a policy
that maximizes the expected reward of producing
n units) is determined recursively by the relations
(i=1,...,u):

fi(n) = mdax {a(nr,-d/mf[+ f,-(O))

+ (1-a) (r;’ + ﬁ;pij(]j(n—mf))}, n=1,...

J=1

where
1, mf’zn
a =
0, mi<n.
This is under the assumption that the

reward/output rate has the constant value of r%/m/
during the entire stage. However, since the physi-
cal output is bounded, it is easily seen that for n
sufficiently large, a = 0. Hence we get for i=1,...,u
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fi(n) = mdaX {I’,d +§u; p,-fjj-(n—mf')}, largen . (8)
i=1

Thus in the long run, the assumption concerning
constant reward/output rate in all states will have
no effect. The equivalence of Eq. (7) is in this case

lim(f(n) - fi(-1) = ¢ ©)

and sooner or later the policy will not differ from
step to step of Egs. (8).

Further details on the value iteration method are
given by Howard (1960; 1971). It should particu-
larly be noticed that m¢, which in this study is in-
terpreted as a physical output (e.g. milk yield), in
the study of Howard (1971) is interpreted as the
expected stage length when state i is observed un-
der the action d. Thus in his model the criterion (5)
is the expected average reward over time. Com-
pared to Eq. (8), Howard (1971) described a more
general case where the stage length is a random
variable of which the distribution is given by the
action and the present state as well as the state to
be observed at the next stage. Further the reward
depends on the state combination, the action and
the stage length. The interpretation as physical out-
put has been discussed by Kristensen (1991).

The value iteration method is identical to what
is usually referred to as dynamic programming,
successive iteration or successive approximation.

2.3.2. Policy iteration

Under infinite planning horizon, the policy itera-
tion method may be applied. Unlike the value itera-
tion method it always provides an optimal policy.
It covers all three objective functions (3), (4) and
(5). The iteration cycle used for optimization has
the following steps:

1) Choose an arbitrary policy s. Go to 2.

2) Solve the set of linear simultaneous equations
appearing in Table 1. Go to 3.

3) For each state 7, find the action 4’ that maximi-
zes the expression given in Table 1, and put
§’(D)=d’. If s’=s then stop, since an optimal po-
licy is found. Otherwise redefine s according to
the new policy (i.e. put s=s’) and go back to 2.
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Table 1. Equations and expressions to be used in the policy iteration cycle with different objective functions.

Objective Linear equations of Step 2 Expression
function Step 3
Equation Unknowns Additional
(i=1,...,u) equation
3) fi=ri+ B B} fiods = ri+ B pif;
j=1 =1
@ g S A f=0 i+ Dl
j=1 J=1
) gmifi=r + . pif; &S, 1=0 ri-mig'+3, pif?
j=1 j=1
From the equations and expressions of Table 1, we subject to (10)

see that also with the policy iteration method the
objective function (4) is just a special case of (5)
where m; = 1 for all 7 and d. For the objective
functions (3) and (4) the policy iteration method
was developed by Howard (1960), and for the
function (5) a policy iteration method was present-
ed by Jewell (1963). Like Howard (1971), Jewell
interpreted m,” as the expected stage length.

Under Criterion (3), f is the total present value
of the expected future rewards of a process starting
in state i and running over an infinite number of
stages following the constant policy s. Under Cri-
terions (4) and (5), f; is the relative value of state i
under the policy s. The difference in relative valu-
es between two states equals the amount of money
a rational person is just willing to pay in order to
start in the highest ranking of the two states in-
stead of the lowest ranking. The absolute value
of f’ is determined arbitrarily by the additional
equation of Table 1, where the relative value of
state u is defined to be zero. The interpretation of
relative values is discussed in details by Kristensen
(1991).

2.3.3. Linear programming

Under an infinite planning horizon, linear pro-
gramming is a possible optimization technique.
When the criterion (3) is applied the linear pro-
gramming problem becomes (cf. Ross, 1970)

i
>, % = Max!
i=1

X — IBZpng =r?, alldED, i=1,...,u.
=

It appears from (10) that each combination of
state and action is represented by exactly one re-
striction. An action d is optimal in state i if, and
only if, the corresponding restriction is satisfied as
an equation when the values of x,....x, arises from
an optimal solution to the linear programming pro-
blem. The optimal values of x,,....x, are equal to
the present values f°,....f, under an optimal policy.

If the objective function (4) is applied, the linear
programming problem becomes

i
>, o rixd = Max!

i=ldeD
subject to

x{’_ p.d.x‘.i=0, i=1,....u (l”
i 777

deD  j=ldeD

i

S 3=l

i=ldeD

In this case an action d is optimal in state i if
and only if x¢ from the optimal solution is strictly
positive. The optimal value of the objective func-
tion is equal to the average rewards per stage under
an optimal policy. The optimal value of 2, x is
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equal to the limiting state probability 7, under an
optimal policy.

Using Criterion (5), we may solve the following
linear programming problem (cf. Kennedy,1986):

x, = Max!

subject to
u-1

= +le,-’ji-xj ~mix, = -r!-pia, (12)
=

deD, i=1,...,u~1

u-1

d d d d
zpujxj -mx,=-r —-p,a+a, deD
j=1
x =0, i=1,...,u,

where a is a pre-determined relative value of state
u chosen sufficiently large to ensure that all other
relative values are positive. The optimal value of
the objective function of the linear programming
problem is equal to the expected average reward
per unit of output as defined in Eq. (5) under an
optimal policy. The optimal values of the variables
XX, are equal to the relative values of the
states 1,...,u-1, provided that the relative value of
state u is equal to a . As it appears, each combina-
tion of state and action is represented by one and
only one restriction. An action is optimal in a state
if and only if the corresponding restriction is satis-
fied as an equation in the optimal solution.

Since Criterion (4) is just a special case of (5)
with all physical outputs set to the value 1, the li-
near programming problem (12) may also be used
in the determination of an optimal policy under
Criterion (4).

2.4. Discussion and applications

Under finite planning horizon, the value iteration
method is perfect, but in replacement models the
planning horizon is rarely well defined. Most often
the process is assumed to operate over an unknown
period of time with no pre-determined stage of ter-
mination. In such cases the abstraction of an infin-
ite planning horizon seems more relevant. There-
fore we shall pay specific attention to the opti-
mization problem under the criteria (3), (4) and (5)
where all three techniques described in the pre-
vious sections are available.

The value iteration method is not exact, and the
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convergence is rather slow. On the other hand, the
mathematical formulation is very simple, and the
method makes it possible to handle very large mo-
dels with thousands of states. Further it is possible
to let the reward and/or the physical output depend
on the stage number in some pre-defined way. This
has been mentioned by van Arendonk (1984) as an
advantage in modelling genetic improvement over
time. The method has been used in a lot of dairy
cow replacement models as an approximation to
the infinite stage optimum. Thus it has been used
by Jenkins and Halter (1963), Giaever (1966),
Smith (1971), McArthur (1973), Steward et al.
(1977; 1978), Killen and Kearney (1978), Ben-Ari
et al. (1983), van Arendonk (1985; 1986) and van
Arendonk and Dijkhuizen (1985). Some of the mo-
dels mentioned have been very large. For instance,
the model of van Arendonk and Dijkhuizen con-
tained 174 000 states (reported by van Arendonk,
1988). In sows, the method has been used by
Huirne et al. (1988).

The policy iteration method has almost exactly
the opposite characteristics of the value iteration
method. Because of the more complicated mathe-
matical formulation involving solution of large
systems of simultaneous linear equations, the me-
thod can only handle rather small models with,
say, a few hundred states. The solution of the line-
ar equations implies the inversion of a matrix of
the dimension u X u , which is rather complicated.
On the other hand, the method is exact and very
efficient in the sense of fast convergence. The
rewards are not allowed to depend on the stage ex-
cept for a fixed rate of annual increase (e.g. infla-
tion) or decrease. However, a seasonal variation in
rewards or physical outputs is easily modeled by
including a state variable describing season (each
state is usually defined by the value of a number of
state variables describing the system).

An advantage of the policy iteration method is
that the equations in Table 1 are general. Under
any policy s we are able to calculate directly the
economic consequences of following the policy by
solution of the equations. This makes it possible to
compare the economic consequences of various
non-optimal policies to those of the optimal.
Further we may use the equations belonging to the
criterion (5) to calculate the long run technical re-
sults under a given policy by redefining r and m; .-
If for instance r; = 1 if a calving takes place and
zero otherwise, and m.’ is the stage length when
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state i is observed under policy s, then g°, which is
the average number of calvings per cow per year,
may be determined from the equations. Further ex-
amples are discussed by Kristensen (1991). For an
example where the equations are used for calcula-
tion of the economic value of culling information,
reference is made to Kristensen and Thysen
(1991).

The policy iteration method has been used by
Reenberg (1979) and Kristensen and @stergaard
(1982). The models were very small, containing
only 9 and 177 states, respectively.

3. The curse of dimensionality: Hierarchic
Markov processes

In order to combine the computational advantages
of the value iteration method with the exactness
and efficiency of the policy iteration method Kri-
stensen (1988; 1991) introduced a new notion of a
hierarchic Markov process. It is a contribution to
the solution of the problem referred to as the “cur-
se of dimensionality” since it makes it possible to
give exact solutions to models with even very
large state spaces. A hierarchic Markov process is
only relevant under infinite planning horizon, and
there is no relevance of the criterion (4) because
the special situation where the physical output
equals 1 in all stages has no computational advan-
tages over other values. Therefore we shall only
consider the criteria (3) and (5).

3.1. Notation and terminology

A hierarchic Markov process is a series of Markov
decision processes called subprocesses built toge-
ther in one Markov decision process called the
main process. A subprocess is a finite time Mar-
kov decision process with N stages and a finite sta-
te space {2, = {1,...,u,} for stagen, 1 =n < N. The
action set D, of the nth stage is assumed to be fini-
te, too. A policy s of a subprocess is a map assig-
ning to each stage n and state i € (), an action
s(n,i) € D,. The set of all possible policies of a
subprocess is denoted I'. When the state i is obser-
ved and the action d is taken, a reward r‘(n) is
gained. The corresponding physical output is
denoted as m/(n). Let p;;(n) be the transition pro-
bability from state i to state j where i is the state at
the nth stage, j is the state at the following stage

and d is the action taken at stage n. Under the Cri-
terion (3) we shall denote the discount factor in
state { under the action d as B/(n) assuming that
the stage length is given by stage, state and action.
Assume that we have a set of v possible subpro-
cesses each having its own individual set of para-
meters. The main process is then a Markov deci-
sion process running over an infinite number of
stages and having the finite state space {1,...,v}.
Each stage in this process represents a particular
subprocess. The action sets of the main process are
the sets FL , vt = 1,...,v, of all possible policies of
the individual subprocesses (to avoid ambiguity
the states of the main process will be denoted by
Greek letters i, « etc.). A policy ¢ is a map assign-
ing to each state ¢ of the main process an action
o(t) € T'. The transition matrix of the main pro-
cess has the dimension v X v, and it is denoted
® = { ¢, }. The transition probabilities are assumed
to be independent of the action taken. The reward
/.7 and the physical output A, in state ¢ of the main
process are determined from the total rewards and
output functions of the corresponding subprocess

fim) = r}(n) , n=N

Uyl

fitn) = ri(n) + B/ (n) Z py(m)f (n+1), (13)
n=1,...N—1, /=t

and

“I

f2 =20, s=o(v),

i=1

and analogously for 4, (except for the discount
factor). The symbol p,(0) is the probability of ob-
serving state i at the first stage of the subprocess.
Finally, the expected discount factor in state ¢ un-
der the action s is denoted as B and calculated as
follows

bj(n) = Bi(n), n=N
i (14)
bi(n) = Bi(n) 2, pi(m)b’(n+1), n=1,...,N-1,
j=

and

1y

B} = 2,p(0)b}(1) .

i=1
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3.2. Optimization

Since the main process is just an ordinary Markov
decision process, the policy iteration cycle des-
cribed in Section 2.3.2 might be used directly for
optimization. In practice Steps 1 and 2 are casily
carried out, but Step 3 is prohibitive because of
the extremely large number of alternative actions
s € I', (as mentioned above s is an entire policy of
the tth subprocess). To circumvent this problem
Kristensen (1988; 1991) constructed an iterative
method, where a value iteration method is applied
in the subprocesses and the results are used in Step
3 of the policy iteration method of the main pro-
cess. The different versions of the method covers
the criteria of optimality under infinite planning
horizon defined as (3) and (5) in Section 2.2.2.
Since criterion (4) is a special case of (5) it is also
indirectly covered.

The general form of the iteration cycle of a hie-
rarchic Markov process has the following steps:
1) Choose an arbitrary policy o. Go to 2.
2) Solve the following set of linear simultaneous

equations for F,°,....F 7 and in case of Criterion

(5) for g”:

g°hl + F7 =f7+ B, b, F°, v=1,..,v.
k=1

In case of Criterion (5) the additional equation
F” =0 is necessary in order to determine a
unique solution. Go to 3.

3) Define

Y:, = ZY(:I d)mFg

under Criterion (3) and 7, = O under Criterion
(5). For each subprocess ¢, find by means of the
recurrence equations

wi(m) = max { rf(n) — mi(m)g” + BINT]
n=N

T,.(n) = m'ilx { r,?i(n) - mf’(n)g"

iy

+ B>, p,-dj(l’l)’rbj(n+l)} , n=1,...,N-1.
Jj=1 |

a policy s’ of the subprocess. The action s’(n,i)
is equal to the d’ that maximizes the right hand
side of the recurrence equation of state i at sta-
gen.Put o’(v) =s forv=1,...,v. If ¢’ = ¢, then
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stop since an optimal policy is found. Otherwi-
se, redefine o according to the new policy (i.e.
put o = 0’) and go back to 2.

When the iteration cycle is used under Criterion
(3) all physical outputs (m‘(n) and accordingly
also h”) are put equal to zero. The iteration cycle
covering this situation was developed by Kristen-
sen (1988).

Under Criterion (4) all physical outputs m/(n)
and all discount factors B%(n) and B are put equal
to 1, but under Criterion (5) only the discount fac-
tors are put equal to 1. The iteration cycle covering
these situations was described by Kristensen
(1991).

3.3. Discussion and applications

The hierarchic Markov process is specially design-
ed to fit the structure of replacement problems
where the successive stages of the subprocesses
correspond to the age of the asset in question. By
appropriate selection of state spaces in the subpro-
cesses and the main process it is possible to find
optimal solutions to even very large models. The
idea is to let the number of states in the subproces-
ses (where a value iteration technique is applied)
be very large and only include very few states in
the main process (where the technique is directly
based on the policy iteration method). Thus we
have got a method which is at the same time fast,
exact and able to handle very large models.

Kristensen (1987) used the technique in a dairy
cow replacement model which in a traditional for-
mulation as an ordinary Markov decision process
would have contained approximately 60 000 states,
and later (Kristensen, 1989) in a model with ap-
proximately 180 000 states. In both cases the num-
ber of states in the main process was only 5, re-
ducing Step 2 to the solution of only 5 simulta-
neous linear equations (versus 180 000 in a tradi-
tional formulation). Even in these very large
models the number of iterations needed to provide
an optimal solution was only from 3 to 6 (tested
under 100 different price and production condi-
tions, Kristensen, 1991). Recently, the method is
applied by Houben et al. (1992).

In sows, Huirne et al. (1992) seem to have ap-
plied a technique which in many aspects is similar
to a hierarchic Markov process, but they have not
explained their method in all details. Also Jor-
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gensen (1992a) has applied a technique which is
inspired of a hierarchic Markov process in a sow
replacement model, and recently (Jgrgensen
1992b), he used the hierarchic method in the deter-
mination of optimal delivery policies in slaughter
pigs.

Naturally the hierarchic model just described
may also be formulated as an ordinary Markov de-
cision process. In that case each combination of
subprocess (main state), stage and state should be
interpreted as a state. We shall denote a state in the
transformed process as (wni), and the parameters
are

v "
ree =rfn);
(f

wind

0= Bin) (15)

md. = min),

p};_’(n). v=k A\ m=n-1
(_)‘)u\, 7(0), n=N/\ m=1 >

0, otherwise

d —_
P{urr!:uuul -

where the parameters mentioned on the right hand
side of the equations are those belonging to the tth
subprocess except for p,(0) which belongs to sub-
process « . This formulation of course has the
same optimal policies as the hierarchic formula-
tion, so it is only computational advantages that
make the hierarchic model relevant. A comparison
to traditional methods may therefore be relevant.

Since the policy iteration method involves the
solution of a set of u equations (where u is the
number of states) it is only relevant for small mo-
dels. The value iteration method, however, has
been used with even very large models and may
handle problems of the same size as the hierarchic
formulation, but the time spent on optimization is
much lower under the hierarchic formulation. To
recognize this, we shall compare the calculations
involved.

Step 3 of the hierarchic optimization involves
exactly the same number of operations as one iter-
ation of the value iteration method (Eq. (6)). The
further needs of the hierarchic method are the cal-
culation of the rewards and either the physical
output or the expected discount factor of a stage in
the main process according to Egs. (13) and (14).
Since the calculations at each stage is only carried
out for one action, the calculation of both main
state parameters involves approximately the same

number of operations as one iteration under the
value iteration method if the number of alternative
actions is 2. If the number of actions is higher, the
calculations relatively involves a lower number of
operations than an iteration under the value iter-
ation method. These considerations are based on
the assumption that the value iteration method is
programmed in an efficient way, so that the sum of
Eq. (6) is not calculated as a sum of all u elements,
but only as a sum of those elements where p,.j" is
not zero according to Eq. (15). Otherwise the hie-
rarchic technique will be even more superior. Fi-
nally the system of linear equations of Step 2 of
the hierarchic cycle must be solved, but in large
models with only a few states in the main process
the time spent on this is negligible.

If we use the considerations above in a practical
example, the advantages of the hierarchic tech-
nique becomes obvious. As reported by Kristensen
(1991) a model with 180 000 state combinations
was optimized by the hierarchic technique under
100 different price conditions. The number of iter-
ations needed ranged from 3 to 6 corresponding to
between 6 and 12 iterations of the value iteration
method. If the latter method was used instead, a
planning horizon of 20 years would be realistic (cf.
van Arendonk 1985). Since each state in the model
equals 4 weeks, this horizon represents 260 iter-
ations, which should be compared to the equivalence
of from 6 to 12 when the hierarchic technique was
applied.

3.4. A numerical example of a hierarchic Markov
process

Consider an asset (e.g. a dairy cow) producing two
kinds of output items (I and 2, e.g. milk and beef).
We shall assume that the production level of item 1
may change stochastically over time, whereas the
production of item 2 is constant over the entire life
time of the asset (but may vary between individual
assets). At regular time intervals (stages) the asset
is inspected in order to determine the production
level of item 1. At the first inspection of the asset
the production level of item 2 is also determined.
In both cases we assume that the result may be
“bad”, “normal” or “good” (representing the pro-
duction of 5, 6 and 7 units of item 1 or 3, 4 and 5
units of item 2). After inspection we can choose to
keep the asset for at least one additional stage, or

23



A.R. Kristensen / A survey of Markov decision programming techniques

Table 2. Parameters of the hierarchic Markov process, subprocesses.

Sub-  Stg. St p;'(n) m/(n) rl(n) p;(n) mi(n) ri(n)
Pr.

Coon i =l j=2 =3 j=4 =1 j=2 j=3 j=4

1 | 1 06 03 01 0.0 5 7 0.0 00 00 1.0 5 5
| | 2 02 06 02 00 6 8 00 00 00 10 6 6
| | 3 0.1 03 06 00 7 9 00 00 00 10 7 7
| 1 4 0.0 00 00 1.0 0 0 0.0 00 00 1.0 0 0
| 2 1 06 03 0.1 0.0 5 6 00 00 00 10 5 4
1 2 2 02 06 02 00 6 7 0.0 00 00 10 6 5
1 2 3 0.1 03 06 00 7 8 0.0 00 00 1.0 7 6
| 2 4 0.0 00 00 1.0 0 0 00 00 00 10 0 0
| 3 1 06 03 01 0.0 5 5 0.0 00 00 10 5 3
I 3 2 02 06 02 00 6 6 00 00 00 1.0 6 4
] 3 3 0.1 03 06 00 7 il 00 00 00 1.0 7 5
| 3 4 0.0 0.0 00 1.0 0 0 0.0 00 00 10 0 0
I 4 1 ~ = - - 5 2 - - - - 5 2
| 4 2 - - - - 6 3 - - - - 6 3
I 4 3 - - - - 7 4 - - - — 7 4
1 4 4 - - - - 0 0 - - - - 0 0
2 I 1 0.6 03 0.1 0.0 5 8 00 00 00 1.0 5 6
2 ] 2 02 06 02 0.0 6 9 0.0 00 00 1.0 6 7
2 1 3 0.1 03 06 00 7 10 00 00 00 1.0 7 8
2 I 4 00 00 00 1.0 0 0 0.0 00 00 1.0 0 0
2 2 1 06 03 01 00 5 7 00 00 00 1.0 5 5
2 2 2 02 06 02 00 6 8 00 00 00 1.0 6 6
2 2 3 0.1 03 06 0.0 7 9 00 00 00 1.0 7 7
2 2 4 00 00 00 1.0 0 0 00 0.0 00 1.0 0 0
2 3 1 06 03 01 0.0 5 6 00 00 00 1.0 5 4
2 3 2 02 06 02 00 6 7 0.0 00 00 1.0 6 5
2 3 3 0.1 03 06 00 7 8 0.0 00 00 1.0 L 6
2 3 4 0.0 0.0 00 1.0 0 0 00 00 00 1.0 0 0
2 4 1 - - - - 5 3 - E - 5 3
2 4 2 - - - - 6 4 - - - - 6 4
2 4 3 - - - - 7 5 - - - - 7 5
2 4 4 - - - - 0 0 - - - - 0 0
3 | 1 06 03 01 00 5 9 0.0 00 00 1.0 5 7
3 | 2 02 06 02 00 6 10 00 00 00 10 6 8
3 | 3 02 03 06 00 7 11 00 00 00 1.0 7 9
3 I 4 00 00 00 1.0 0 0 0.0 00 00 1.0 0 0
3 2 1 06 03 01 00 5 8 00 00 00 1.0 5 6
3 2 2 02 06 02 00 6 9 0.0 00 00 10 6 7
3 2 3 01 03 06 00 7 10 00 00 00 1.0 7 8
3 2 4 0.0 00 00 1.0 0 0 00 00 00 1.0 0 0
3 3 1 06 03 01 00 5 7 00 00 00 1.0 5 5
3 3 2 02 06 02 00 6 8 0.0 00 00 1.0 6 6
3 3 3 01 03 06 00 7 9 00 00 00 1.0 7 7
3 3 4 00 00 00 10 0 0 00 00 00 10 0 0
3 4 _ 2 2D s 4 - 2D s 4
3 4 2 - - -~ 6 5 - - -~ 6 5
3 4 3 I 6 - - - -7 6
3 4 4 - - = =0 0 ) 0
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we can choose to replace it at the end of the stage
at some additional cost.

The three classes of production level of item 2
are defined as states in the main process of a hie-
rarchic Markov process. Thus the number of sub-
processes is also 3 and each subprocess represents
an asset of a certain productivity concerning item
2. When a new asset is purchased, we assume that
the probability distribution over main states is uni-
form, so that the probability of entering either one
is 1/3. The maximum age of an asset is assumed to
be 4 stages, and the states of the subprocess are de-
fined from the productivity concerning item 1.
Further a dummy state of length, reward and out-
put equal to O is included at each stage of the sub-
processes. If the asset is replaced at the end of a
stage, the process enters the dummy state with pro-
bability 1 at the next stage, and for the rest of the
duration of the subprocess it will stay in the dum-
my states.

For all subprocesses we assume that, if the asset
is kept, the probability of staying at the same pro-
ductivity level (state in the subprocess) concerning
item 1 is 0.6, and if the present state is “normal”,
the probability of transition to either “bad” or
“good” is 0.2 each. The probability of transition (if
kept) from “bad” or “good” to “normal” is in both
cases 0.3, and from “bad” to “good” and vice versa
the probability is 0.1. The initial state probabilities
of the subprocesses are assumed to depend on the
subprocess in such a way that for subprocess num-
ber 1 (low productivity of item 2) the probabilities
of entering state “bad”, “normal” and “good” are
0.6, 0.3 and 0.1 respectively. For subprocess num-
ber 2 the corresponding probabilities are 0.2, 0.6
and 0.2 and finally for subprocess number 3 they
are 0.1, 0.3, 0.6.

Table 3.
probabilities of subprocesses

The physical output m(n) of state i at stage n of
subprocess number ¢ is equal to the production of
item 1 under the action d, and the corresponding
rewards are assumed to be defined as follows:

d _ d d —
ri(n) = emi + ok, — ¢, —c§, 1=1,2,3,

n 16
n=1,...,4, i=1,...4, d=1,2, (9

where ¢, is the price of item 1, c, is the price of
item 2, ¢, is the cost of operating the asset at the
age n, k_is the production of item 2 in subprocess
(main state) number ¢ and c, is the replacement
cost which is zero if no replacement takes place.
The cost of operating the asset is assumed to in-
crease linearly from 1 to 4 over stages. Defining c,
=¢, =1 and ¢;* = 2 gives us the final parameters
appearing in Tables 2 and 3. All stages (except
those where the process is in a dummy state of
zero length) are assumed to be of equal length,
which we for convenience put equal to 1.

We shall determine an optimal solution under
the following 3 criteria of optimality:

1) Maximization of total expected discounted
rewards, i.e., the objective function (3). In
this case the physical outputs of Table 2 are ig-
nored, and a discount factor B/(n) = exp(-r),
where r is the interest rate, is applied (for states
where the stage length is not zero).

2) Maximization of average rewards over time. In
this situation we use the objective function (5)
letting the output represent stage length. No
discounting is performed in this case.

3) Maximization of average rewards over output
defined as in Table 2. Thus the objective function
(5) is applied, and no discounting is performed.

Parameters of the hierarchic process. Transition probabilities of main process and initial state

Transition probabilities, main process

Initial state probabilities, subprocesses

Main state o, p(0)
L
k=1 k=2 K=3 i=1 i=2 i=3 i=4
1 173 1/3 1/3 0.6 0.3 0.1 0.0
2 173 1/3 173 0.2 0.6 0.2 0.0
3 1/3 173 1/3 0.1 0.3 0.6 0.0
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Table 4. Optimal policies under the three criteria (c1, ¢2, ¢3) defined in the text (actions:1="keep", 2="replace®).

Subprocess Stage State 1 State 2 State 3

cl ¢2 c3 cl ¢2 c3 cl ¢2 3
1 1 2 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 2
1 3 2 2 2 2 2 2 2 2 2
2 1 2 2 1 1 1 1 1 1 2
2 2 2 2 2 2 2 2 2 2 2
2 3 2 2 2 2 2 2 2 2 2
3 1 1 1 1 1 1 1 11 1
3 2 2 2 1 1 1 1 1 1 2
3 3 2 2 2 2 2 2 2 2 2

In Table 4, optimal policies under the three criteria
are shown. It appears that the same policies are op-
timal under the first two criteria, but under the
third criterion the optimal policy differs. A more
detailed example of the effect of criterion of opti-
mality was discussed by Kristensen (1991).

In order to compare the efficiency of the hie-
rarchic technique to the traditional policy and value
iteration methods, the problem of the example was
transformed to an ordinary Markov decision pro-
cess and optimized by those methods. The trans-
formed model has 3 X 4 X 4 = 48 states,
which is not larger than the policy iteration method
may be applied without problems. In Table 5 some
performance data of the three optimization tech-
niques are compared.

The superiority of the hierarchic technique over
the policy iteration method is due mainly to the
time spent on solving the linear simultaneous
equations of Step 2. In the hierarchic case a system
of 3 equations is solved, whereas 48 equations are
solved under the ordinary policy iteration method.

In this numerical example the performance of
the hierarchic technique is even more superior to
the value iteration method than expected from the
theoretical considerations of Section 3.3. In the
present case an iteration of the hierarchic model is
performed even faster than one of the value itera-
tion method applied to the same (transformed) mo-
del. The reason is that the value iteration algorithm
has not been programmed in the most efficient
way as defined in Section 3.3. On the contrary, the
sum of Eq. (6) has been calculated over all 48
states of the transformed model. Since only 4
transition probabilities from each state are positi-
ve, the sum could be calculated only over these 4
states.

4. Uniformity: Bayesian updating

As discussed earlier, it is obvious that the traits of
an animal varies no matter whether we are consi-
dering the milk yield of a dairy cow, the litter size

Table 5. The performance of the hierarchic technique compared to the policy and value iteration methods
under the three criteria (c1, ¢2, ¢3) defined in the text.

Hierarchic model

Policy iteration Value iteration

cl c2 c3 cl c2 c3 cl c2 c3
Number of iterations 4 3 3 3 4 3 100 100 100
Computer time, relativity 1 082 077 120 150 120 62 64 63
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of a sow or almost any other trait. On the other
hand, it is not obvious to what extent the observed
trait Y, at stage n is, for instant, the result of a per-
manent property of the animal X, a permanent da-
mage caused by a previous disease X, or a tempo-
rary random fluctuation e,. Most often the observed
value is the result of several permanent and ran-
dom effects. With ¥, X, X, and ¢, defined as abo-
ve the relation might for instance be

Y”:m+X]+aX2+en, a7

where m is the expected value for an arbitrarily se-
lected animal under the circumstances in question,
and a = -1 if the animal has been suffering from
the disease, and a = 0 otherwise. In this example
X, only varies among animals, whereas e, also va-
ries over time for the same animal. The effect of
the damage caused by the disease X, is in this ex-
ample assumed to be constant over time when it
has been “switched on”. The value of X, is a pro-
perty of the individual disease case (the “severity”
of the case).

In a replacement decision it is of course impor-
tant to know whether the observed value is mainly
a result of a permanent effect or it is just the result
of a temporary fluctuation. The problem, however,
is that only the resulting value Y, is observed,
whereas the values of X|, X, and ¢, are unknown.
On the other hand, as observations of Y|, ¥,,... are
done we are learning something about the value of
the permanent effects. Furthermore, we have got a
prior distribution of X, and X,, and each time an
observation is done, we are able to calculate the
posterior distribution of X, and X, by means of the
Kalman-filter theory (described for instance by
Harrison and Stevens, 1976) if we assume all ef-
fects to be normally distributed.

A model as described by Eq. (17) fits very well
into the structure of a hierarchic Markov process.
Thus we may regard Y, as a state variable in a sub-
process, and the permanent effects X, and X, as
state variables of the main process. We then face a
hierarchic Markov process with wunobservable
main state. Kristensen (1993) discusses this notion
in details, and it is shown that under the assump-
tion of normally distributed effects, we only have
to keep the present expected values of X, and X,,
the currently observed value of Y, and (in this ex-
ample) the number of stages since the animal was
suffering from the disease (if it has been suffering

from the disease at all). The expectations of X, and
X, are sufficient to determine the current posterior
distribution of the variables, because the variance
is known in advance. Even though the posterior
variance decreases as observations are done, the
decrease does not depend on the values of Y, Y,,...
but only on the number of observations done.

In the study of Kristensen (1993), a more gene-
ral case involving several traits each being influen-
ced by several unobservable effects is sketched,
and a numerical example involving only a single
trait is given. An example concerning replacement
of sows has been given by Jgrgensen (1992a). It
was demonstrated in both studies that the Bayesian
approach in some cases may result in state space
reduction without loss of information.

5. Herd restraints: Parameter iteration

One of the major difficulties identified in the intro-
duction was herd restraints. All the replacement
models mentioned in the previous sections have
been single-component models, i.e., only one ani-
mal is considered at the same time, assuming an
unlimited supply of all resources (heifers or gilts
for replacement, feed, labour etc) and no produc-
tion quota. In a multi-component model all animals
of a herd are simultaneously considered for
replacement. If all animals (components) compete
for the same limited resource or quota, the replace-
ment decision concerning an animal does not only
depend on the state of that particular animal, but
also on the states of the other animals (compo-
nents) of the herd.

If the only (or at least the most limiting) herd re-
straint is a limited housing capacity, the number of
animals in production is the scarce resource, and
accordingly the relevant criterion of optimality is
the maximization of net revenues per animal as it
is expressed in the criteria (1), (2), (3) and (4).
Thus the optimal replacement policy of the single
component model is optimal for the multi-compo-
nent model too.

If the only (or most limiting) herd restraint is a
milk quota, the situation is much more compli-
cated. Since the most limiting restriction is a fixed
amount of milk to produce, the relevant criterion
of optimality is now the maximization of average
net revenues per kg milk yield as expressed in
criterion (5), because a policy that maximizes net
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revenues per kg milk will also maximize total net
revenues from the herd which was assumed to be
the objective of the farmer.

By following a policy which is optimal accord-
ing to criterion (5) we assure at any time that the
cows which produce milk in the cheapest way are
kept. Thus the problem of selecting which cows to
keep in the long run (and the mutual ranking of
cows) is solved, but the problem of determining
the optimal number of cows in production at any
time is not solved. If for instance, it is recognized
2 months before the end of the quota year that the
quota is expected to be exceeded by 10 percent, we
have to choose whether to reduce the herd size or
to keep the cows and pay the penalty. The problem
is that both decisions will influence the possibili-
ties of meeting the quota of the next year in an op-
timal way. To solve this short run quota adjustment
problem we need a true multi-component model.

An other example of a herd restraint is a limited
supply of heifers. If the dairy farmer only uses
home-grown heifers for replacement, the actions
concerning individual cows become inter-depen-
dent, and again a multi-component model is
needed in order to solve the replacement problem.
Ben-Ari and Gal (1986) and later Kristensen
(1992) demonstrated that the replacement problem
in a dairy herd with cows and a limited supply of
home grown heifers may be formulated as a Mar-
kov decision process involving millions of states.
This multi-component model is based on a usual
single-component Markov decision process repre-
senting one cow and its future successors. Even
though the hierarchic technique has made the solu-
tion of even very large models possible, such a
model is far too large for optimization in practice.
Therefore, the need for an approximate method
emerged, and a method called parameter iteration
was introduced by Ben-Ari and Gal (1986).

The basic idea of the method is to approximate
cither the present value function f(n) (objective
function (3)) or the relative values f (objective
functions (4) and (5)) by a function G involving a
set of parameters a,,...,a,, to be determined in such
a way that G(i,a,,....a,) = f(n) or G(i,a,,....a,) = f’.

In the implementation of Ben-Ari and Gal
(1986) the parameters were determined by an iter-
ative technique involving the solution of sets of si-
multaneous linear equations generated by simula-
tion.

In a later implementation Kristensen (1992) de-

28

termined the parameters by ordinary least squares
regression on a simulated data set. The basic idea
of the implementation is to take advantage from
the fact that we are able to determine an optimal
solution to the underlying (unrestricted) single-
component model. If no herd restraint was present,
the present value of the multi-component model
would equal the sum of the present values of the
individual animals determined from the underlying
single-component model. Then it is argued in what
way the restraint will logically reduce the (multi-
component) present value, and a functional expres-
sion having the desired properties is chosen. The
parameters of the function are estimated from a
simulated data set, and the optimal action for a gi-
ven (multi-component) state is determined as the
one that maximizes the corrected present value. (A
state in the multi-component model is defined
from the states of the individual animals in the
single-component model, and an action defines the
replacement decision of each individual animal).

Ben-Ari and Gal (1986) compared the economic
consequences of the resulting optimal multi-com-
ponent policy to a policy defined by dairy farmers,
and they showed that the policy {rom the parame-
ter iteration method was better. Kristensen (1992)
compared the optimal multi-component policies to
policies from usual single-component models in
extensive stochastic simulations and showed that
the multi-component policies were superior in
situations with shortage of heifers.

The parameter iteration method has been ap-
plied under a limited supply of heifers. It seems to
be realistic to expect, that the method and the basic
principles of Kristensen (1992) may be used under
other kinds of herd restraints as for instance the
short time adjustment to a milk quota as mentioned
above.

6. General discussion

In the introduction, the main difficulties of the ani-
mal replacement problem were identified as varia-
bility in traits, cyclic production, uniformity (the
traits are difficult to define and measure) and herd
restraints. We are now able to conclude that the
difficulties of variability and the cyclic production
are directly solved by the application of Markov
decision programming, but when the variability of
several traits are included we face a problem of di-
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mensionality. The formulation of the notion of a
hierarchic Markov process contributed to the solu-
tion of the dimensionality problem, but did not
solve it. The upper limit of number of states to be
included has been raised considerably, but not
eliminated.

This is for instance clearly illustrated when we
formulate multi-component herd models in order to
deal with herd restraints. In that case we still have
to use approximate methods to determine an “op-
timal” replacement policy. On the other hand it has
been demonstrated by Kristensen (1992) that the
parameter iteration method applied to a multi-
component herd model (even though it is only ap-
proximate) is able to improve the total net revenue
compared to the application of a usual single-com-
ponent (animal) model in a situation with shortage
of heifers. The parameter iteration method is an
important contribution to the problem of determin-
ing optimal replacement policies under herd re-
straints.

In other situations with a limiting herd restraint
it may be relevant to use an alternative criterion of
optimality maximizing average net revenue per
unit of the limiting factor. This method has been
successfully applied in a situation with milk pro-
duction under a limiting quota.

Recent results have also contributed to the solu-
tion of the uniformity problem. The Bayesian
updating technique described in Section 4 seems to
be a promising approach, but it has not yet been
tested on real data. It might be a solution to the
problem of including animal health as a trait to be
considered. The problem of including diseases in
the state space has never been solved, but at pre-
sent Houben et al. (1992) are working on it. As con-
cemns other traits such as litter size or milk yield
the Bayesian approach may in some cases result in
a reduction of the state space without loss of infor-
mation (Jgrgensen, 1992a; Kristensen, 1993). Thus
it contributes indirectly to the solution of the di-
mensionality problem.
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Abstract: In this paper a new notion of a hierarchic Markov process is introduced. It is a series of Markov
decision processes called subprocesses built together in one Markov decision process called the main
process. The hierarchic structure is specially designed to fit replacement models which in the traditional
formulation as ordinary Markov decision processes are usually very large. The basic theory of hierarchic
Markov processes is described and examples are given of applications in replacement models. The theory
can be extended to fit a situation where the replacement decision depends on the quality of the new asset
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1. Introduction

A pioneer of replacement theory was Preinrich
[12] who pointed out that every reinvestment in
industrial equipment is a link in a chain compris-
ing the permanent occurrence of new, future re-
placements. His model is usually denoted the ‘con-
stant chain’ approach, because he assumed that
each link in the replacement chain was equal.
Terborgh [18] presented a model which enabled
him to take technological change into account,
and later [19] he extended his model to consider
taxes. Smith [15] relaxed the constant chain as-
sumption of Preinrich by assuming that operating
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receipts depend on the purchase time of the new
investment.

A common feature of the above mentioned
models is that they give a mathematical formula-
tion of the replacement problem assuming com-
plete knowledge of all functions and variables
involved. From the mathematical model general
rules for optimal replacement under some speci-
fied restrictions (e.g. the constant chain assump-
tion) are deduced. Risk and uncertainty are not
considered.

The introduction of Dynamic Programming by
Bellman [1] provided a fundamentally different
approach. Instead of general rules such models
give numerical solutions to concrete replacement
problems (and a lot of other problems too). Dy-
namic programming is very usefull when the sto-
chastic elements are introduced in replacement
problems. In particular Howard [5] has contrib-
uted to the progress in this field with his book on
‘Dynamic Programming and Markov Processes,
where he also introduced the so-called policy itera-
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tion method to solve multi-stage decision prob-
lems in connection with Markov processes.

A more extensive survey of general replacement
models is given by Rapp [13].

In the present paper a new notion of a hierarchic
Markov process is described. It is a series of
Markov decision processes called subprocesses
built together in one Markov decision process
called the main process so that each stage in the
main process represents a subprocess. The concept
of a hierarchic Markov process was originally
introduced by Kristensen [7] in order to study a
dairy cow replacement problem. The theory is,
however, relevant for replacement problems in
general. We shall describe the general theory, but
for examples we shall mostly refer to the dairy
cow replacement problem, because this case re-
veals many features which illustrate the usefull-
ness of the theory. For a larger example concern-
ing the application of a hierarchic Markov process
in this field, reference is made to Kristensen [9].

When the theory is applied to a replacement
problem it provides, like related dynamic pro-
gramming techniques, an optimization algorithm
to give a numerical solution. No general replace-
ment rules are deduced from the theory.

The usual tool for optimization in dairy cow
replacement studies is dynamic programming and
so in particular Markov decision processes. A
review of such studies is given by van Arendonk
[20]. Recent papers [21, 22 and 23] also deal with
optimization by use of dynamic programming.
Ben-Ari and Gal [2] have described a model tak-
ing the limited supply of replacement heifers di-
rectly into account. They applied a special tech-
nique called parameter iteration to approximate
an optimal solution.

In most studies [4,6,11,14,16,17,21,22,23] the
value iteration method described by Howard [5] is
used. This method does not give an exact solution
under an infinite planning horizon. However, it is
possible to optimize models with a very large
number of states (29,880 states were handled by
van Arendonk [21]). Kristensen and Ostergaard
[10] used the policy iteration method. From a
theoretical point of view this method has the
advantage that it is very efficient and gives an
exact solution. A problem is, however, that the
method uses inversion of the transition matrix
which has the dimension n X »n where n is the
number of states. In the present paper this prob-
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lem is circumvented by the introduction of a
hierarchic Markov process. The structure of such a
process is like a Markov decision process (main
process) where each stage itself represents a
Markov decision process (subprocess) with a fixed
number of stages. The idea is to use value iteration
for the subprocess which have a finite number of
stages and a modified version of policy iteration
for the main process with infinite planning hori-
zon. Thus only the transition matrix of the main
process has to be inverted. Exact solutions can be
given to even very extensive problems if it is
possible to model the problem in such way that
the number of states of the main process is not too
large.

The purpose of the present paper is partly to
describe the theory of hierarchic Markov processes
and the associated optimization algorithm and
partly to show how the theory is applied to re-
placement models. The latter purpose is fulfilled
through examples with basis in a stochastic ver-
sion of the classical constant chain replacement
model.

2. The policy iteration method

In order to obtain a frame of reference when
the theory of hierarchic Markov processes is intro-
duced, the traditional version of a Markov deci-
sion process and the policy iteration method of
Howard [5] is summarized in this section.

Consider a discrete time Markov decision pro-
cess with a finite state space 2={1,2,...,w} and
a finite action set D. A policy s is a map assigning
to each state i €  an action s(i) € D. Let r# be
the reward gained when the state / is observed,
and action d€ D is taken, and let p,f"j be the
transition probability from state i to state j if the
action 4 is taken. As usual, p,f’j >0 for all i, j, d,
and 5., p{=1 for all i, d. The time interval
between two transitions is called a stage. The
discount factor B¢ is allowed to depend on the
action d and the present state i. In practice this
means that the stage length /¢ may depend on d
and i. We assume that /> 0 for all i and 4, and
since B¢ is defined as B = exp(— pl?), where p is
the interest rate, we have that 8¢ <1 for all / and
d.1f s(i)=d, the symbols r,?, p{, and B are also
written as r’, p;, and B respectively. Let r*
denote the vector (r;,...,r2)’, and let P° be the
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matrix { p;;}. The diagonal matrix whose non-zero
elements are B5,..., B2 is denoted B*.

If an infinite planning horizon is assumed the
vector of present values g°=(gi,..., g%) under

the policy s is calculated as
g =(1-BP) 'r, (1)

where 7 is the w X w identity matnix. An optimal
policy is defined as a policy which maximizes the
elements of g° (i.e. a policy s’ is optimal if and
only if it satisfies the condition g* = max,{g°},
where max is understood elementwise). The policy
iteration method can now be stated as follows:

(1) Choose an arbitrary policy s. Go to step (2).
(2) Calculate g°= (I — B*P*)"'r*. Go to step (3).
(3) For each state i, determine the action d’ € D

that maximizes r+ B¢Y%_,pfg; and put
s'(iy=d’. If s" = s then stop since an optimal
policy is found. Otherwise redefine s accord-
ing to the new policy (i.e. put s=35") and go
back to step (2).

Howard [5] showed that the above stated
algorithm always provides an optimal policy in a
finite number of iteration steps when the discount
factor is assumed to be fixed. His proof is, how-
ever, easily extended to the situation where the
discount factor depends on s and i. The latter
version was used by Kristensen and Ostergaard
[10] in a dairy cow replacement model with 177
states and 4 actions. The optimization thus called
for inversion of a matrix of the dimension 177 X
177. Nevertheless a larger number of states was
wanted in order to obtain a more accurate repre-
sentation of a dairy cow, but the transition matrix
was already so large that the model could not be
extended without making the inversion impossible
to carry out. To circumvent this problem the
theory of a hierarchic Markov process was devel-
oped.

3. Hierarchic Markov processes

Consider a discrete time Markov decision pro-
cess (subprocess) with N stages and a finite state
space 2,={1,...,w,} for stage n, 1 <n<N. The
action set D, of the n-th stage is assumed to be
finite too. A policy s of the subprocesses is a map
assigning to each stage n and state i€, an
action s(n, i) € D,. The set of all possible policies

of the process is denoted A. When the state i is
observed at the stage n and the action s(»n, i) is
taken, a reward #’(n) is gained. Let p;;(n) be the
transition probability from state i to state j where
i is the state of the n-th stage, j is the state of the
following stage, and the policy s defines the action
s(n, i) to be taken. In this formulation the transi-
tion matrix P;={p;;(n)} is not necessarily a
square matrix. As before p;.(n) > 0 for all i, j, n,
and s, and X%7, p;;(n) =1 for all i, n and s. The
vector Py =(py(0),..., p,,(0))" gives the probabil-
ity distribution of the states at stage 1. The stage
length /{(n) is assumed to be determined by the
stage, the state and the action taken. In the sub-
process the assumption //(n) >0 is not needed.
The discount factor is defined as B’(n) =
exp(—pli(n)) where p is the interest rate. An
additional reward T is gained at the end of stage
N. As before, the parameters may be indexed by
actions or policies as convenient.

Let f’(n) denote the present value of the total
expected future reward, excluding 7, under the
fixed policy s for a process in state i at stage n.
These values can be determined reversely step by
step by the well known recurrence equations

fF(N)=ri(N) (2)
and

Wn+1

fF () =ri(n)+ B;(n) ; pi(n)fi(n+1), (3)

where n=N—1,...,1,and i=1,..., w,. The pre-
sent value of the entire process is 7

= ¥ p 7). @

The equations (2)—(4) make it possible to calculate
the present value (excluding T) of the entire pro-
cess under any policy.

An optimal policy of the subprocess is defined
as a policy s’ satisfying gf’(n) =max, c »{ &' (n)}
for all i and n, where g;(n) is the present value
including the terminal reward 7. For convenience
the present values corresponding to an optimal
policy will be denoted g;(n). If T is known, an
optimal policy can be determined by the value
iteration method. In each state at each stage, an
optimal action is chosen according to the recur-
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rence equations

gi(N):;gf})’;{rid(N)+Bid(N)T} (5)
and
gi(n)

- a0+ B0) X a5 () (1),

(6)

where n=N-1,...,1,and i=1,..., w,.

We shall use a Markov decision process as the
one just described as a subprocess of a hierarchic
Markov process. Assume that we have a set of &
possible subprocesses. Consider a Markov deci-
sion process with an infinite number of stages and
the finite state space H = {1,..., 2 }. Each stage in
this process, which we shall call the main process,
represents a particular subprocess. The action sets
of the main process are thesets 4, ¢t =1,..., &, of
all possible policies of the individual subprocesses
(to avoid ambiguity the states of the main process
will be denoted by Greek letters ¢, k etc). A policy
S is a map assigning to each state ¢ € H of the
main process an action S(t) € A,. The transition
matrix of the main process is of the dimension
h X h, and it is denoted © = {§, }. The transition
probabilities are assumed to be independent of the
action taken (in Section 4.4 this assumption is
relaxed). The reward in the state ¢ of the main
process is the present value f* (where s = S(1)) of
the entire subprocess calculated as shown in the
equations (2)—(4). The index « refers to the state
of the main process, and at the same time it points
out the corresponding subprocess.

The stage length of the main process in state ¢
is equal to the entire length of the corresponding
subprocess. The stage lengths of the subprocesses
depend on the observed states, and consequently
the stage length L of the main process is a ran-
dom variable whose distribution depends on the
state ¢ and the policy S. Since the discount factor
B is defined as B = exp(—pL) this factor is ran-
dom too. It is assumed that L > 0 and thus 0 < B
< 1. The present value of the infinite main process
under the policy S, when the present state is ¢, is
denoted v . By convention, let the symbol ES(-|¢)
denote a conditional expectation under the policy
S given that the present state is ¢. Similarly the
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symbol ES(-|¢, x) denotes a conditional expecta-
tion given that the state at the present stage is ¢
and the state at the following stage will be «.
Analogous symbols are used for conditional prob-
abilities.

Since the present value of an infinite process
under a fixed policy is constant over stages we get
for all §

YLS=fLS+ES<By;§IL), t=1,...,h, (7)
where K is the (random) state at the following
stage. From (7) we have for all S

h
yS=£5+ Y ES(By,ﬂL, K)PS(K=K|L)

k=1

{ K)QK

h
=15+ ¥ ES(ByS

k=1

h
=f5+ Y E5(Blu, k)8,yS, 1=1,..., h.

k=1

(8)

Define the matrix @3 = { ES(B|¢, «)6,.} and
the vectors y° = (yS, ...,y ) and f5=
(f5,..., ). The equations (8) can be written in
matrix notation as

Yi=/"+ 057", (9)

The elements of @5 are all non-negative, and
the sum of any row is strictly less than 1 in
magnitude. Thus it is easily seen that the matrix
(I — O3), where I is the h X h identity matrix, is
non-singular. Thus we can solve equation (9) with
respect to yS:

v =(1-05) 'fS. (10)

Equation (10) is analogous to Equation (1), and
Howard’s proof [5] of the properties of the policy
iteration method is easily extended to cover the
present case where an optimal policy is defined as
a policy that maximizes the elements of y¥ in
equation (10). Then in principle the policy itera-
tion method can be used directly for optimization.
However step (3) in Section 2 may seem prohibi-
tive. In the notation used for the main process this
point tells us to determine the action s € A, that
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maximizes
ZE (Ble, k)8,v7, (11)

where § is the policy determined during the previ-
ous step of the iteration cycle. Since the action s is
an entire policy of a subprocess the number of
alternatives can be extremely large (although
finite). The exact number is [1Y_,(m,)“~, where
m,, is the number of elements in the action set D,
of a subprocess. It is obvious that even relatively
small models contain a prohibitive number of
policies.

It is, however, not necessary to try all alterna-
tives. The value iteration method as stated in the
recurrence equations (5) and (6) gives directly the
policy that maximizes the expression (11). We
only have to put T=T,=%"_.6 v5 and use the
equation (5) and (6) to determine the desired
policy of the subprocess. Intuitively this is obvi-
ous, and since the formal proof is easily accom-
plished it is omitted. With this modification of
policy iteration, the optimization method of
hierarchic Markov processes can be stated as fol-
lows:

(1) Choose an arbitrary policy S of the main
process. Go to step (2).

(2) Caleulate yS=(1—03)"'f5. Go to step (3).

(3) For each state ¢ of the main process, de-
termine by use of the recurrence equations (5)
and (6) the optimal policy s’ €4, of the «-th
subprocess when T=T=%"_,6 v5, and put
S’(t)=s". If S"=S then stop since an opti-
mal policy is found. Otherwise redefine S
according to the new policy (i.e. put S=S")
and go back to step (2).

The calculation of the conditional expectation
ES(B|t, ) depends on the individual model for-
mulation. A method for an important class of
replacement models is shown in Section 4.5.

4. Hierarchic Markov processes and replacement
models
4.1. Background

In a review article on Markov decision processes
van der Wal and Wessels [24] concluded that the

theoretical aspects are now fairly well elucidated,
but that the most important research area for the
years to come is the development of methods for
handling very large problems since most real prob-
lems give rise to a tremendous number of states.
One method, called truncated policy iteration,
suggested that instead of solving equation (1) di-
rectly by inversion of (I — B*P*) the solution is
approximated by use of a truncated series based
on the relation (I — B°P*)" ' =X® (B*P*)". The
rate of convergence of such methods is discussed
by Dembo and Haviv [3]. In a dairy cow replace-
ment study, Ben-Ari and Gal [2] used a method
called parameter iteration to approximate an opti-
mal solution in a very large model with 180 state
variables. The idea was to combine simulation and
dynamic programming to compute successive lin-
ear approximations.

Also the present paper is a contribution to the
efforts concerning the practical analysis of large
problems, but instead of using some operational
methods to approximate an optimal solution, the
special structure of a replacement model is used to
introduce a hierarchic model where the dimension
of the matrix to be inverted in equation (10) is
small even though the model may be very large. In
that way we are able to obtain an exact solution.

One of the reasons that a replacement model,
formulated as a traditional Markov decision pro-
cess, is usually very large is that the age of the
asset in question is included as a state variable.
Consider a replacement model with a finite state
space 2= {1,..., w}. Assume that one of the state
variables defining §2 is the age of the asset de-
noted as a. In a discrete time model only a finite
number of values are distinguished so that a €
{0,1,..., A)}. If the value of a increases one unit
for each stage it is obvious that a transition from
state i, where a =a,, to state j, where a=a, is
only possible in one step if a;=a;+ 1. Thus we
have for any policy that p;, =0 if a;# a,+1, and
p;;=>0ifa;=a,+ 1.

If several other state variables are included in
the model the transition matrix P*={ p;;} may
be very large, but because of the variable a con-
cerning age, the main part of the elements of P*
are zero. Thus the only information, they carry, is
that such transitions are not possible. Because of
the large transition matrix, the policy iteration
method becomes difficult to implement if more
than a few state variables are included.
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The formulation of hierarchic Markov processes
circumvents this problem concerning age as a state
variable. The age of the asset does not need to be
included in any state space. Instead the age is
accounted for by the stage number of the subpro-
cess as shown in the following section. The idea of
a hierarchic Markov process is to take advantage
of the fact that when a replacement takes place
something fundamentally different begins in the
process. In the traditional Markov decision model
a replacement is only represented as a transition
just like all others from one state to another.

4.2. Only one state in the state space of the main
process

Consider an asset which is described by the age
ac{0,1,..., 4} and some state variables
X{,..., X,. Define a subprocess with N=4+2
stages so that the length of the entire subprocess
corresponds to the life time of the asset. In other
words, as long as the asset is not replaced, the age
of the asset is measured by the stage number. The
state spaces of the process are defined by the state
variables xy,..., x, which are assumed to be dis-
crete. Define further in each state space a replace-
ment state referred to as A. For n=1,..., N—2
the action set is D, = {‘keep’, ‘replace’}, but for
n= N —1, where the age is A4, only one action is
allowed: D, _; = {‘replace’}. No action is taken
for n=N (ie. Dy=#). If s(n, i)="‘keep’ the
reward r’(n) is equal to the net revenue of the
asset during the n-th stage when state [ is ob-
served. If s(n, i) =‘replace’ the asset is replaced
immediately, and the reward r’(n) is equal to the
salvage value of the asset at the age indicated by n
when the present state is 7. In that case the stage
length is zero (i.e. B7(n)=1), and the process
moves on to state A. Thus we have

pi(n)=1 if s(n, i) =" replace’. (12)
For state A we further assume for all s that
pn(n)=1, n=1,...,N-1, (13)
ri(n)=0, n=1,...,N, (14)
and

Bi(n)=1, n=1,...,N. (15)

In other words, the stages from the replacement
to the end of the subprocess are fictive without
any economic consequences. Since the action taken
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at stage N — 1 is always ‘replace’, the state space
at stage N only contains one element: §2, = {A}.

All stages, where the present state is not A and
the action taken is ‘keep’, are assumed to be of
equal length so that we have 87(n) = 8 < 1, where
B is fixed for s(n, i) =‘keep’, and i # A.

When the action ‘replace’ is taken, the asset is
replaced by a new asset which is assumed to be
identical to the present one. Thus this model is a
stochastic version of the constant chain approach
as it was introduced in [12] (cf. Section 1). A stage
in the main process begins when a new asset is
purchased, and it ends when it is replaced. The
state space of the main process only contains one
state (i.e. H ={1}). Then the transition matrix ©
only contains the element 1, and the inversion in
equation (10) is just the inversion of a real num-
ber.

Even in this rather degenerate hierarchic
Markov process with only one state in the main
process there is a large computational advantage
of using the hierarchic structure, because we only
have to invert a real number in equation (10). If
the age was included as a state variable in the
subprocess the resulting model would be an
ordinary Markov decision process as applied in
for instance [10]. Such model might very well
contain several thousand states, and then we had
to invert a matrix of that dimension if traditional
policy iteration was used.

4.3. Several states in the state space of the main
process

Usually it is convenient to use the possibility of
having several states in the main process. Suppose
that the assets in question can be sorted by quality
in h different classes ¢=1,..., . When a new
asset is ordered, it is not possible to specify the
desired quality, but when it is delivered, the qual-
ity class ¢ can be determined by some test. Then
there will be h different subprocesses, and the
state of the main process is determined by the
quality of the asset. If the probability of an asset
being of the quality ¢ is denoted ¢q,, X" .9, =1, we
have for all «

0“( = qK' (16)

In this formulation even very extensive models
can be optimized. In the dairy cow replacement
model of Kristensen [7] the state variables of the
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subprocesses were the length of the calving inter-
val (3-8 classes), the milk yield of the present
lactation (15 classes), and at some stages the milk
yield of the previous lactation (15 classes). The
number of stages was 25. The state variable of the
main process was the genetic class (5 classes)
defined from the father of the cow. If that model
were to be formulated in the traditional manner as
a Markov decision process the genetic class, the
age (24 classes), and the state variables of the
subprocess should be included as state variables.
In that case the state space would contain more
than 60000 states, and a matrix of corresponding
dimension should be inverted in equation (1). By
using a hierarchic Markov process it was neverthe-
less possible to give an exact solution, because
only a matrix of the dimension 5 X 5 should be
inverted in equation (10). A detailed description
of this model is given in [9], and the estimation of
parameters is described by Kristensen [8].

4.4. An extended model

A perhaps more realistic way of using the possi-
bility of having several states in the main process
involves a slight change in the formulation of the
hierarchic Markov process. The assumption of the
transition matrix @ being independent of the
policy of the main process is relaxed. Assume
again that an asset exists in A different qualities,
but that we are able to rank the qualities from the
least preferred to the most preferred. The state
number (:=1,..., k) is set equal to the rank of
the corresponding quality so that ¢, is preferred to
t; if and only if ¢, > ;. Unlike the former example
we now assume that we can order a specific qual-
ity, but that there is a limited supply so that if we
order the quality ¢, there is the probability 7, that
it can be delivered. The only restriction on the
probabilities 7y, ..., , is the usual 0 <7 < 1, for
¢t=1,..., h. The relation of =,,..., 7, to the tran-
sition probabilities appear below from equation
(19).

In the subprocesses we define a number of new
actions of the kind ‘replace if a new asset of at
least quality ¢ is available’. The action stated is
referred to as action :. Further we refer to the
action ‘keep’ as action #+1 so that the total
number of actions is 4 + 1. Instead of the single
replacement state A we now assume that all state
spaces contain 4 replacement states A,..., A,.

When a subprocess ends up in state A, it means
that the old asset is replaced by a new asset of the
quality ¢, and that the next state of the main
process will be :. At the end of a subprocess, the
state will always be one of the replacement states
Ao Ay (e 2y={Ay,..., A, ). A change in
the formulation concerns equation (5) where the
terminal reward T now depends on the state i €
§2,. The equation should now be states as

g(N)= max {r*(N)+B(N)T,}, (17)
de Dy

where

T,=v% i€Q,. (18)

If the action A+ 1 (‘keep’) is taken, the re-
wards and the transition probabilities are the same
as when the action was ‘keep’ in the preceding
sections, but if the action ¢, 1 € {1,..., h) is taken
the probability of a transition to state A, is

0, Kk <t,

h>k>u, (19)

J=«x+1

T, K=h,

L3

pir(n) = 1""-- .:H (1-m),

n=1,...,N—1.

The probability that the asset is kept is 1 — p, (n).
All replacement states are assumed to possess the
properties stated in the equations (13)—(15) and
further p3 , (n)=0if ¢ # «.

This reformulation also concerns the transition
probabilities of the main process. The actions of
the subprocess influence the following state of the
main process, so that the transition probabilities
6, depend on the policy s and should really be
denoted as 8% or §°. In equation (10) these prob-
abilities are needed. They are calculated as fol-
lows. The subprocess ¢ will ultimately end up in
one of the states A,,..., A,. At each stage n of the
subprocess we can calculate the probability distri-
bution *"* of the states in {2, under the policy s
from the recurrence equations

v =g, (20)

and

P =ygtnTheps o op=2.. . N. (21)
The transition probabilities §° are then given

as

6L =y, (22)
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where ‘" (the k-th element of ') denotes the
probability that the subprocess ¢ is in state A, at
stage N.

The algorithm stated in Section 3 is also valid
in this case. The only change is that equation (5) is
replaced by equation (17) and (18) and that the
transition probabilities of the main process now
depend on the policy.

4.5. The calculation of the conditional expectation
ES(B|i, )

In the examples given, the conditional expecta-
tion ES(B|t, k)= E*(B|1, k), where S(1)=s€
A,, can be calculated quite easily. We have for all
L, K, S

N
E*(B|t, k)= Z E*(B|t, k,p=n)

n=1

XP(n=n|t, k) (23)

where 1 denotes the stage of the subprocess
where the replacement takes place, and P'(n =
n|t, k) denotes the conditional probability under
the policy s that the asset is replaced at stage n
given that the present subprocess is ¢, and the
following subprocess will be .

In the example of Section 4.2, equation (23)
reduces to

E'(B)= ) E'(B|n=n)P'(n=n), (24)

n=1

since there 1s only one state in the state space H of
the main process. In this situation we have for all
n and s

E*(B|n=n)=p", (25)
and
P:(11=n)=xlz1>\""s— lxn—l,_v (26)

1,n—1,s

where the probability distributions and
"¢ are calculated from the recurrence equations
(20) and (21) with ¢ =1.

In the example of Section 4.3 the states of
different stages are independent (cf. equation (16))
so equation (23) can for all ¢ and s be reduced to

E'(Bl1)= ) E'(Bli,n=n)P°(n=n|1).

n=1

27)
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Analogous to equation (25) we have for all ¢, n,
and s

E*(B|i, n=n)=p", (28)
and
P(m=n|o) =g5" =5 1. (29)

Also in the example of Section 4.4 we have for
all ¢, k, n, and s

E*(B|i, k,m=n)=p". (30)

Since there are s replacement states Ag,..., A,
and the successive states of the main process are
no longer independent the calculation of P*(n =
n|t, k)is more complicated. We get for all ¢, x, n,
and s

P(m=nle, k)= (g5 =" 1) 85, (31)

5. Conclusions

The introduction of the concept of a hierarchic
Markov process can be considered as a contribu-
tion to the theory of Markov decision processes
which makes it possible to analyse even very large
problems with a certain structure. Practical experi-
ence has demonstrated that the optimization
method, which is a modified version of the policy
iteration method, provides exact solutions even to
problems which would contain more than 60000
states if they were to be formulated as ordinary
Markov decision processes. The idea is to define
the hierarchic process in such a way that the state
space of the main process is small even though the
state spaces of the subprocesses may be very large.

The method has been developed to take ad-
vantage of the special structure of a replacement
problem. Through a number of examples it is
shown how the theory is applied in replacement
models based on a stochastic version of the con-
stant chain approach. It is demonstrated how the
replacement decisions can depend on the quality
of the asset available for replacement.
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ABSTRACT

Kristensen, A.R., 1987. Optimal replacement and ranking of dairy cows determined by a hierarchic
Markov process. Livest. Prod. Sci., 16: 131-144.

A dairy cow replacement model based on the notion of a hierarchic Markov process is presented.
A hierarchic Markov process is a series of Markov decision processes built together in one Markov
decision process, called the main process.

In the model a cow is described in terms of lactation number, stage of lactation, the level of milk
yield during the previous and present lactation, the length of the calving interval, and the genetic
class defined from the breeding value of the father. The criterion of optimality is the maximization
of the present value under an infinite planning horizon. Revenues from milk, calves, and replaced
cows, feed costs and costs of replacement heifers are considered.

The future profitability calculated from the optimal solution is used for ranking of the cows in
the herd. The genetic class makes it possible to include the heifers available for replacement in
the ranking and to let the replacement decision depend on the genetic class of the heifers.

It is concluded that the milk yield of previous lactation is not needed as a state variable when
the other variables are present in the model.

INTRODUCTION

In traditional replacement theory most attention has been paid to industrial
items. Typically the optimal replacement time has been determined by consid-
erations based on comparison of the marginal net revenue of the old item and
the average net return of the new item. The dairy cow replacement problem is
different in three main features (Ben-Ari et al., 1983): firstly, the stochastic
element is prevalent; secondly, there is only a limited supply of replacement
heifers available (typically home-grown) and lastly the production of the dairy
cow is cyclic.

'Present address: The Royal Veterinary and Agricultural University, Institute of Animal Science,
Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark.
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These features make the marginal net revenue approach less suitable for the
case of dairy cows, and dynamic programming (in particular the Markov deci-
sion process) has become widely accepted as the main tool for optimization. A
review of studies in this field is given by van Arendonk (1984 ). Recently papers
have been presented by van Arendonk (1985a, 1986) and van Arendonk and
Dijkhuizen (1985) where a comprehensive work of identifying the most impor-
tant traits and conditions in the determination of optimal replacement policies
is carried out. In van Arendonk (1985b) the conclusions from the former papers
are used for a discussion of management guidelines to support replacement
and insemination decisions concerning individual cows.

Several optimization methods are available to Markov decision processes.
From a theoretical point of view, the policy iteration method (Howard, 1960)
should be preferred since it is exact and very efficient in the sense that con-
vergence occurs rapidly (van der Wal and Wessels, 1985). A problem however,
is the size of the state space since the method implies that a transition matrix
of the dimension n X n (where n is the number of states) is inverted. The value
iteration method, which has been used in most studies, makes it possible to
handle models with a very large number of states and allows continuous genetic
improvement to be taken into account. Policy iteration does not directly allow
this, but the phenomenon can be simulated indirectly by adjustment of the
interest rate used in the optimization. On the other hand, the value iteration
method suffers from the weakness that it is not exact when an infinite planning
horizon is used. Further, the convergence is often rather slow.

In an unpublished dairy cow replacement study, Kristensen (1985) intro-
duced an alternative formulation of a Markov decision process called a hier-
archic Markov process, where each stage itself represents a Markov decision
process. The biological part of the study, describing a model of milk yield
(including estimation of the parameters) accounting for the effect of the herd
level, the breeding value of the father, and the length of the calving interval is
published in Kristensen (1986a). In that paper the effect of milk yield during
previous periods on present milk yield as well as probability distributions of
the length of the calving interval are also estimated. The formulation of the
theory of hierarchic Markov processes is presented in Kristensen (1986b).

The aim of the present paper is to present a dairy cow replacement model
based on a hierarchic Markov process, and to present some of the results when
the model is used in the determination of an optimal replacement policy under
conditions referring to a typical price and interest situation of a Danish dairy
herd in 1985.

THE REPLACEMENT MODEL
Hierarchic Markov processes

The idea of a hierarchic Markov process is that each stage in the main pro-
cess represents a separate Markov decision process (a subprocess) with a finite



number of stages. The number of alternative subprocesses is equal to the num-
ber of states in the main process. If state i is observed in the main process it
means that the ith subprocess is running at present. State variables are defined
in the main process as well as in the subprocesses. Actions (decisions) are only
defined in the subprocesses because an action in the main process is equal to
an entire policy of the subprocess in question. The rewards (net revenues of a
single stage) in the main process are calculated from the rewards of the sub-
process, and the stage length in the main process is equal to the total length of
the corresponding subprocess. For a complete description, reference is made
to Kristensen (1986b). The criterion of optimality is the maximization of the
expected present value of the total future rewards under infinite planning
horizon.

The subprocesses

A stage in a subprocess ends and the next one begins 16, 24, 32 and 40 weeks
after calving and always immediately when a cow is replaced. The length of the
stages beginning 40 weeks after calving depends on the length of the calving
interval. Other stages are 8 weeks long if the cow is kept, but if the cow is
replaced at the beginning of a stage, the length is zero.

The states are defined by the values of three state variables which are the
milk yield (fat corrected milk) of the previous lactation (15 classes), the milk
yield of the present lactation (15 classes), and the calving interval (a maxi-
mum of 8 classes: 44, 48, 52, ..., 72 weeks ). A measure of milk yield corrected
for the herd level, the breeding value of the father, and the calving interval as
described in Kristensen (1986a) is used. The classes of milk yield are defined
in such a way that all 15 classes occur with the same probability in a herd which
has not been subjected to culling. Because of too few observations in the fifth
and sixth lactations it was not possible to estimate the effect of the milk yield
of the previous lactation on future milk yield (Kristensen, 1986a). In those
cases (later than 24 weeks after the fifth calving) the milk yield of the previous
lactation was omitted as a state variable.

The number of classes corresponding to the calving interval varies with the
stage number as it appears in Table I, where the characteristics of the state
variables are summarized. At 16 weeks after calving, for instance, only three
classes are distinguished: ‘44 weeks’, ‘48 weeks’, and ‘52 weeks or more’.

Beyond the states defined by the state variables mentioned, three additional
states are defined. When a cow is replaced the subprocess immediately trans-
fers to the ‘replacement state’ where it will stay during the remaining stages.
The stage length in this state is always zero, and the reward is also zero. Such
stages are fictitious, and they only serve as a way of ensuring that all subpro-
cesses contain the same number of stages.

Another state is the ‘disease state’. When this state is observed it means that
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TABLEI

The state variables and the number of classes distinguished at various stages

Lactation Lactation State variable

number stage
Milk yield Milk yield Length of
of previous of present the calving
lactation lactation interval

1 16 — 15 3

1 24 — 15 5

1 32 — 15 7

1 40 — 15 8

2-4 16 15 15 3

2-4 24 15 15 5

2-4 32 15 15 7

2-4 40 15 15 8

5 16 15 15 3

5 24 15 15 5

5 32 — 15 7

5 40 — 15 8

6 16 — 15 3

6 24 — 15 5

6 32 — 15 7

6 40 — — -

the cow is in such a condition that it must be replaced (involuntarily) irre-
spective of the values of the usual state variables observed. The cow is replaced
at once (i.e. the stage length is zero) and the process transfers to the replace-
ment state.

If the cow is not known to be pregnant 40 weeks after calving the process
occupies the ‘infertility state’. In that case the cow is replaced immediately
with the same consequence to the subprocess as in the disease state.

The weight of the cow is not included as an ordinary state variable. Instead
a standard weight curve (Kristensen, 1986a) describing weight as a function
of lactation number and stage of lactation is used.

It is assumed that the maximum age of a dairy cow is reached 40 weeks after
the sixth calving; this is the latest time at which the animal is replaced. This
maximum age is based on the fact that a typical annual replacement rate in
Danish dairy herds is between 40% and 50% so that only very few cows reach
the sixth lactation.

The actions of the subprocesses are (1) replace the cow with a heifer (imme-
diately); (2) keep the cow.



The rewards are calculated separately for each combination of subprocess,
stage, state and action. The reward, when the cow is kept, is based on revenues
from milk and calves (if a calving takes place during the stage) and feeding
costs (basic food and food for milk production). At the first stage of the sub-
process the price of the heifer is deducted. If the cow is replaced the reward is
equal to the salvage value of the cow.

The main process

A stage in the main process ends and a new one begins when a replacement
takes place. The length of the stage is thus equal to the herdlife of the individ-
ual cow. The only state variable included in the main process is the breeding
value of the father of the cow, calculated with respect to the milk yield of his
offspring. Five classes are distinguished, and the variable will be referred to as
the genetic class. The definition of the various classes from relative breeding
values is as follows: Class 1: <97, Class 2: 98-102, Class 3: 103-107, Class 4:
108-112 and Class 5: >113. The effect of the genetic class on milk yield was
only significant during the first three lactations because of the relatively few
observations concerning older cows; this does not mean that there is no effect
during later lactations, but that the particular data were too sparse to estimate
it. As a consequence, the effect is omitted during the last three lactations.

The parameters

The transition probabilities of the subprocess were calculated from the model
of milk yield described by Kristensen (1986a), and the estimated probability
distributions of the calving intervals from the same paper. At each stage there
is a probability of involuntary replacement independent of the milk production
and the calving interval. These probabilities are based on data from Dijkhuizen
(1980), and are calculated using a method described by van Arendonk (1985c).
The probability of involuntary replacement is equal to the probability of a
transition to the disease state. The rewards during stages where the cow is kept
are determined from the production and food intake of the cow calculated from
the model described by Kristensen (1986a). The prices and the interest rate
can readily be changed so that they fit the conditions of the individual herd. If
a cow is replaced the salvage value is determined by the live weight of a cow at
the lactation and stage of lactation in question. The standard weight curve
used appears in Kristensen (1986a).

The transition probabilities of the main process are assumed to be indepen-
dent of the present state (i.e. the probability of observing a specific state at
the next stage is the same no matter which state is observed at the present
stage). In practice this is equal to assuming that the genetic class of a heifer is
independent of that of the present cow. Naturally such an assumption is not
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correct in every detail. If the present cow is from a high genetic class it produces
better offspring, and then there is a slightly better material available for later
replacements, because there is a small chance that the cow is replaced by its
own daughter. In a large herd, however, this chance is very small, so the effect
will be negligible. Since the model is most likely to be used in large herds the
assumption of independence seems reasonable. Thus only a probability distri-
bution of the genetic class is needed. The five classes were defined in such a
way (cf. Kristensen, 1986a) that all classes are observed with approximately
the same probability.

Discussion of the model

If the model described in the previous sections were to be formulated as a
traditional Markov decision process two additional state variables should be
included beyond the three variables of the subprocesses and the genetic class
of the main process. One of these additional variables should be the lactation
number with six classes, and the other should be the stage of lactation with
four classes. The total number of states in such a model would exceed 60 000.
It is clear that optimization by use of policy iteration would be out of question.

Other models containing a large number of states have usually been simpli-
fied with respect to transitions between different classes of milk yield. Smith
(1971) predicted the class of milk yield of the following lactation in a deter-
ministic manner in a model with 15 138 states. Stewart et al. (1977, 1978)
assumed that a cow remained in the same class of milk yield during her entire
life even though their model only contained 2695 states. In the models of van
Arendonk (1985a, 1986) and van Arendonk and Dijkhuizen (1985) it was
assumed that transitions between different classes of milk yield only took place
at the end of the lactation period. Thus the class remained the same during the
entire lactation period. In the present study, however, no such simplifications
are made; transitions between different classes of milk yield are possible at any
stage of the subprocesses according to the probability distributions defined by
the transition probabilities.

The idea of representing the production of the cow by the milk yield of the
previous lactation and the milk yield of the present lactation was originally
introduced by Smith (1971). Recently van Arendonk (1985a) and van Aren-
donk and Dijkhuizen (1985) have used the same approach. Several models
(beginning with Giaever, 1966) have used the calving interval as a state vari-
able, but until the present study only van Arendonk and Dijkhuizen (1985)
and van Arendonk (1986) have defined classes with intervals of a single
month.The possibility of taking actions more than once during a lactation was
introduced by Kristensen and Ostergaard (1982), and it was also used in the
models of van Arendonk (1985a, 1986) and van Arendonk and Dijkhuizen
(1985).



TABLE II

Standard conditions used in the optimization

Prices (Dkr.)

Milk (kg FCM) 2.40
Basic food (SFU) 1.30
Food for milk production (SFU) 1.90
Calf 1400.00
Heifer 8500.00
Young cow until 2nd calving (kg. live weight) 11.50
Older cow (kg. live weight) 11.00
Interest rate? (%) 3
Herd level ® 5400

'Scandinavian Feed Units.
Corrected for inflation.
3Average milk yield of the first 40 weeks of a lactation in the herd. Adjusted to 1st lactation level

(cf. Kristensen, 1986a).

No previous models known to the author have contained a state variable
concerning the genetic class. As stated by Ben-Ari et al. (1983) heifers cannot
be considered as standard replacement items, as is usually assumed in the tra-
ditional replacement theory. The genetic class makes it possible to compare
the heifers available in the herd with the present cows and to rank the heifers
on sire breeding values.

Genetic improvement is not directly considered, but it must be assumed that
the phenomenon can be simulated rather precisely by assuming that a contin-
uous genetic improvement will result in a fixed annual rate of increasing net
revenue. If this rate is for instance 1% and the interest rate is say 5% we only
have to use an interest rate of 4% to account for genetic improvement in the
optimization.

Optimization

The computer programs for practical optimization were written in Pascal.
They were constructed in such a way that all parameters, assumptions, and
prices can readily be changed without affecting the rest of the programs. This
approach makes it possible to optimize under the very conditions of the indi-
vidual dairy herd. The standard conditions used in the present optimization
appear in Table II.

Comprehensive sensitivity analyses were carried out by Kristensen and
Ostergaard (1982) as well as by van Arendonk (1985a, 1986) and van Aren-
donk and Dijkhuizen (1985). Because the conclusions of these studies agree
in almost every detail no such analyses were included in the present study.
Instead attention has been paid to the interpretation of the optimal replace-
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ment policy and to the discussion of further applications of the results from
the optimization.

RESULTS AND DISCUSSION
Optimal policy and ranking of cows

Since the optimal policy consists of more than 60 000 actions it is impossible
to show it as a whole in a table. Instead examples are given concerning cows at
24 weeks after the fourth calving. Optimal actions for calving intervals of 44
and 56 weeks respectively appear from Table III. The figures of the table give
the expected gain of taking the action ‘keep’ compared to ‘replace’; a negative
number means that it is optimal to replace in that state. At this lactation num-
ber there is no distinction between the five subprocesses (i.e. the genetic class).
If optimal actions were shown for cows during the three first lactations we also
had to tell which genetic class they belonged to.

The expected gain, which we shall denote as the future profitability (cf. van
Arendonk, 1984), can be used to rank the cows of a particular herd. The state
and the stage of each cow are determined, and the associated future profitabil-
ity is calculated, as has been done in Table III for some states concerning the
fourth lactation. The size of the future profitability then determines the rank
of the cow compared to the other cows in the herd. This ranking is even more
important than the optimal policy. Sensitivity analyses in Kristensen and
Ostergaard (1982) showed that the ranking is almost unchanged even when
the prices and the interest rate are varied considerably. The optimal policy is
far more sensitive to such changes. In many situations it is also more relevant
to the dairy farmer to know which cow is least profitable rather than whether
a particular cow should be replaced. Replacements are often dictated by the
calvings of new heifers, and then naturally the least profitable cows should be
replaced. Such situations often arise in herds that only use home-grown heif-
ers, which is a very common policy in Denmark because of infection risks. The
ranking also makes it possible to account for the limited supply of heifers men-
tioned by Ben-Ari et al. (1983). At any time the ranking selects the least prof-
itable cow, and if a heifer is available this cow is replaced.

The state variables of the subprocesses

The influence of all three state variables is clearly seen in Table III: low
yielding cows are replaced, but if the calving interval is short a lower milk yield
is accepted before the cow is replaced. The significance of each state variable
can be revealed by comparing the future profitability of different states. As
expected, the most important state variable is the class of milk yield of the
present lactation. The difference in future profitability between the lowest and
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the highest class is approximately 3300 Dkr. for cows with a calving interval
of 44 weeks, and approximately 1950 Dkr. for cows with a calving interval of
56 weeks.

The influence of the class of milk yield of the previous lactation is much
smaller. The difference in future profitability between the lowest and the high-
est class is in the range 250-420 Dkr., depending on the calving interval and
the milk yield of the present lactation. At earlier stages the difference is even
smaller, and at many stages (not shown ) the optimal decision does not depend
on the milk yield of the previous lactation at all. The difference is a little larger
in Table I1I, probably because the genetic class is not included in the model
from the fourth lactation, and then the milk yield of the previous lactation
becomes more important in the prediction of future milk yield.

The influence of the calving interval is revealed in the same way. The dif-
ference in future profitability between calving intervals of 44 and 56 weeks
varies from approximately zero for low yielding cows to approximately 1400
Dkr. for high yielding cows. The reason that there is almost no difference for
low yielding cows is that the future profitability is defined as the gain if the
cow is kept until the beginning of the next stage where the optimal action of
that stage is taken compared to a situation where the cow is replaced imme-
diately. A very low yielding cow, which is kept at the present stage, would
almost certainly be replaced at the next stage, irrespective of the calving inter-
val, and future profitability will not depend on the calving interval. On the
other hand the influence is considerable for high yielding cows which will prob-
ably be kept for several stages. The difference of approximately 1400 Dkr. is
equal to the economic advantage of shortening the calving interval from 56
weeks to 44 weeks for a high yielding dairy cow.

The influence of genetic class

The influence of the genetic class can be illustrated using the survival curves
of different classes. At each stage the survival curve shows the probability that
a heifer which entered the herd at first calving is still present in the herd. In
Fig. 1 the survival curve of a heifer from the first genetic class (the lowest
class) is compared to that of a heifer from the fifth class (the highest class)
and shows the considerable difference in average herd life of the two classes.
This is perhaps surprising since the genetic class is defined only from the
breeding value of the father; a combination of the breeding values of the father
and the mother should show an even larger effect. Even in the present model
the culling of cows of low genetic class is much more intensive than for cows
of high genetic class.

It is also possible to include information about the heifers available with
respect to genetic class. Table I1I is based on a comparison of the present value
if the cow is kept with the expected present value of an unknown replacement
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Fig. 1. Survival curve of the lowest genetic class (Class 1) compared to the corresponding curve
of the highest genetic class (Class 5). The curves give for each class the probability that a heifer
having entered the herd at first calving is still present in the herd at the time indicated.

heifer (i.e. unknown genetic class). If the expected present value of an unknown
heifer is denoted r and the present value of a heifer from the ith genetic class
is denoted r; we can define the relative present value of such heifer as d;=r;—r.
Table IV shows the relative present values of heifers from the various genetic
classes, and together with Table III, gives useful additional information. If the
future profitability of state j (in Table III j can take 2 x 15 values) is denoted
pj, and if d;_; <p;<d, then a cow in state j should be replaced if a heifer from
at least the ith genetic class is available. If the best heifer available is from the
genetic class i —1 or lower, it is better to sell the heifer and keep the cow. In
this way the heifers are included in the ranking because the least profitable
cows should be replaced, even if only by heifers from the lowest genetic class.
A group of cows follows which can be replaced by heifers from the second genetic
class (or higher) and so on until the highest ranking cows which should not
be replaced even by the best heifers.

TABLE IV

Relative present values of heifers from the various genetic classes (Dkr.)

Genetic class

1 2 3 4 5

—395 —290 —40 282 526
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CONCLUSIONS

It has been shown that it is possible to model the dairy cow replacement
problem within the theory of hierarchic Markov processes. By this method
exact solutions are given to a model which would contain more than 60 000
states if it were to be formulated as an ordinary Markov decision process. Opti-
mal actions are determined and the cows of a herd are ranked according to
their future profitability derived from the optimal solution.

The most important state variable is the milk yield of the present lactation,
but there is also a considerable influence of the calving interval on the optimal
actions. On the other hand the influence of the milk yield of the previous lac-
tation was rather small, in particular when the genetic class was taken into
account. It is concluded that in a model which contains the milk yield of the
present lactation and the genetic class as state variables it is hardly necessary
to include the milk yield of the previous lactation as a state variable.

The genetic class, defined as the breeding value (concerning milk yield) of
the father, was shown to exert a considerable influence on average herd life
through the actions taken. This variable made it possible to include heifers in
the ranking of cows because the breeding value of the father (i.e. if the father
is a proven sire) is usually known prior to the first calving. It must be assumed
that the genetic class would be even more important if it was defined from the
breeding value of both the mother and the father. This was not possible in the
present study because of lack of data. If this effect is wanted in a model genetic
theory could be used to predict the influence on the daughter’s production.
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RESUME

Kristensen, A.R., 1987. Renouvellement optimal et classement des vaches laitiéres a partir d’'un
processus hiérarchique de Markov. Livst. Prod. Sci., 16: 131-144 (en anglais).

On a élaboré un modele pour renouvellement des vaches laitiéres sur la base d’un processus
hiérarchique de Markov. Ce dernier est une série de processus de décision de Markov assemblés
dans un processus de Markov appelé le processus principal.

Dans le modele, les vaches sont décrites par leur numéro et leur stade de lactation, par le niveau
de leur production laitiére dans la lacation antérieure et la lactation en cours, par la durée de
Iintervalle entre vélages et par leur classe de valeur génétique calculée a partir de celle de leur pére.
L’objectif est de maximiser la valeur actuelle du revenu net d’'une période infinie. On a pris en
considération les revenus apportés par le lait, le veau et la vache lors de sa réforme et les cofits des
aliments et des génisses de remplacement.

Le profit a venir, qui est déterminé par la solution optimale, est appliqué au classement des
vaches dans le troupeau. La classe de valeur génétique offre la possibilité d’inclure les génisses de
remplacement disponibles dans le classement et de laisser les décisions de remplacement dépendre
de la classe de valeur génétique des génisses.

On conclut que la production laitiére de la lactation antérieure n’est pas nécessaire quand les
autres variables sont dans le modele.
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KURZFASSUNG

Kristensen, A.R., 1987. Optimale Remontierung und Rangierung von Milchkiihen durch einen
hierarchischen Markov-Prozess. Livst. Prod. Sci., 16: 131-144 (auf englisch).

Es wird ein Modell zur Remontierung von Milchkiihen vorgestellt, das als hierarchischer Mar-
kov-Prozess formuliert ist. Ein hierarchischer Mariov-Prozess ist als Serie von Markov-Ent-
scheidungsprozessen zu verstehen, die in einem Markov-Entscheidungsprozess (Hauptprozess)
zusammengefasst sind.

In dem Modell wird eine Kuh gekennzeichnet durch Laktationsnummer, Laktationsstadium,
Niveau der Milchleistung in der vorangegangenen und laufenden Laktation, Zwischenkalbezeit
und genetischer Klasse (definiert durch den Vater-Zuchtwert). Als Optimierungskriterium wird
der diskontierte Nettogewinn bei unendlichem Planungshorizont maximiert. Dabei werden Ertrige
aus Milch, Kilbern und Schlachtkithen sowie Kosten fiir Futter und Bestandserginzung
beriicksichtigt.

Zur Rangierung der Kiihe innerhalb Herde wird ihr erwarteter Betriebswert aus der optimalen
Losung verwendet. Durch die Verwendung der genetischen Klassen koénnen auch die zur Remon-
tierung bereitstehenden Jungrinder in die Rangierung einbezogen werden.

Die Ergebnisse zeigen, dass die Milchleistung der vorangegangenen Laktation nicht herange-
zogen werden muss, solange die iibrigen Informationen einbezogen sind.









Maximization of net revenue per unit of physical
output in Markov decision processes”

ANDERS R. KRISTENSEN
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Summary

A new criterion of optimality in Markov decision processes is discussed. The
objective is to maximize the average net revenue per unit of physical output
(or input). The criterion is relevant in some production models where a
limitation is imposed on the physical output (production quota) or on an input
factor (scarce resources). An obvious application is in dairy cow replacement
models under milk quotas. Iteration cycles are presented for ordinary com-
pletely ergodic Markov decision processes and for hierarchic Markov pro-
cesses. The consequences of the new criterion are illustrated by a numerical
example.

Keywords: Markov decision process, optimization, milk quota, replacement.

1. Introduction

Consider a system which at any time is described by its state defined by all
relevant information on the characteristics of the system. The state is
observed at discrete time intervals called stages, and the transition from one
state to another at the following stage is governed by probability distribu-
tions depending on the present state, but, independent of the states pre-
viously observed. It is assumed that a reward (depending on the state) is
gained in each stage. The system may be affected by actions which influence
the reward of the present stage and the probability distribution of the state
to be observed at the next stage.

A stochastic process like the one described above is called a Markov
decision process, which is an important tool in operations research. The
original formulation is due to Howard (1960). Several techniques are avail-
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able for optimization, i.e., for each possible state to decide which action to
choose in order to maximize a predefined objective function giving the
criterion of optimality. The literature on Markov decision processes is
extensive, but careful reviews have been given by van der Wal and Wessels
(1985) as well as White and White (1989). The numerous applications in
agriculture have been discussed and reviewed by Kennedy (1986).

One of the most successful areas of application in agriculture has been in
animal replacement problems. The earlier examples in dairy cows have been
reviewed by van Arendonk (1984). More recent applications are van Aren-
donk (1986) and Kristensen (1987, 1988). In these models each cow and its
future successors represent a separate Markov decision process. The states
are defined from the characteristics of the present cow (i.e., lactation number,
stage of lactation, reproductive status, milk yield etc.). The actions of the
models are to keep the cow or to replace it. Similar studies on sow replace-
ment have been carried out by Huirne et al. (1988) and Dijkhuizen et al.
(1989).

The usual criterion of optimality for Markov decision processes running
over an infinite number of stages has been either the average rewards
criterion, where the average of rewards per stage is maximized, or the
discounting criterion, where the total of expected discounted rewards (i.c.,
the expected present value) is maximized. In some applications, however,
neither of these will suffice. A typical case where the need for an alternative
criterion emerges, is when production is modelled in a situation where some
restriction is imposed on the system. The restriction could either be a
limitation in output (production quota) or a limited supply of some input
factor used in the production (scarce resources).

As an example, consider the dairy cow replacement models mentioned
above (Kristensen 1987, 1988 or van Arendonk 1986). Since a dairy farmer
can only have some fixed maximum number of cows, an appropriate criterion
of optimality (if no further restrictions are imposed) is the maximization of
net revenue per cow in the long run. Since each cow represents a separate
Markov decision process, that implies the usual discounting criterion. Sup-
pose now, that a production quota is imposed that limits the amount of
milk that the individual farmer is allowed to produce. (Such quotas have
been introduced in all countries of the EC.) If the quota is obtainable with
fewer cows than the maximum set by housing capacity, a better criterion of
optimality is obviously the maximization of average net revenue per kg of
milk produced.

In the present paper such a criterion of optimality is discussed, and
methods to provide optimal policies are presented for ordinary Markov
decision processes as well as the special hierarchic Markov processes
described by Kristensen (1988). For an application of the new criterion of
optimality in a dairy cow replacement model, reference is made to Kristensen
(1989).
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2. Ordinary completely ergodic Markov decision processes

Consider a discrete time Markov decision process with a finite state space
Q={l, ..., w} and a finite action set D. A policy s is a map assigning to
each state 7 in Q an action s(i) from D. Let p{; be the transition probability
from state i to state j if the action d is taken. As usual, all transition
probabilities are non-negative and X}_, p{;=1 for all 7, d. The reward to be
gained when the state i is observed, and action d is taken, is denoted r¢. The
time interval between two transitions is called a stage. If 5(i) = d, the symbols
r and pf; are also written as r{ and Di; respectively.

If the traditional average rewards criterion is used we search for a policy
that maximizes

g= Y mr, (1)

where g7 is the average rewards per stage and =n° is the limiting state
distribution of the Markov process under the policy s (i.e., when the policy
is kept constant over an infinite number of stages). We assume that the
Markov process is completely ergodic for any policy, i.e., that a unique
limiting state distribution exists.

We have now defined the elements of a traditional Markov decision
process, but in this paper we further assume that if state i is observed, and
action d is taken, a physical quantity of m? is involved. The quantity m{ can
either be an output factor or an input factor. In the case of a dairy cow
replacement model, m{ would be the amount of milk produced by a cow in
state { when action d is taken. In this paper we shall refer to m{ as the
physical output. It is obvious that we can calculate the average physical
output g5, under the policy s in a way analogous with equation (1):

o= Y mim. 2)

In this paper an optimal policy is defined as a policy that maximizes

¢=sice=( 5w ) (£ romt). 3
where g is the average rewards per unit of physical output when the policy

is kept constant over an infinite number of stages. To ensure that g°is always
defined (and that the sign is determined by g) we assume, that for all s,

M=

o= im; > 0.
i=1

Fortunately we can profit from results obtained in the area of semi-Markov
decision programming, where the average net revenue over time has been
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handled by Jewell (1963) (and others) for processes where stage length is a
stochastic variable whose distribution depends on the state i and the action
d. Denote as 7] the expected stage length given s and i. Jewell (1963) presented
an algorithm to find a policy that maximizes

g (Z nfr:) / (Z nfﬁ)- @)

By comparing equations (3) and (4) it is seen that the two problems are
completely analogous. Thus we can apply the algorithm of Jewell to the
present case, where we want to find a policy that maximizes g* of equation
(3). The iteration cycle to be used can be stated as follows:

1) Choose an arbitrary policy s. Go to 2.
2) Solve the set of w+1 simultaneous equations for g* and the relative
values (cf. Section 3) f§,..., f&:

gmitfi=r+ lefjff, i=1,...,w (5)
i=
5 =10, (6)
Go to 3.

3) For each state i, find the alternative d’ from D that maximizes
d d & d
ri—mig'+ _Zl piifi
=

and let s'(i))=d". If 5=y, then stop, since an optimal policy is found.
Otherwise, redefine s according to the new policy (i.e., let s=g') and go
back to 2.

It should be noted that by equations (5) and (6) we have a general set of
equations to determine g° under any predefined policy. Thus we are able to
calculate the economic consequences of using alternative non-optimal poli-
cies instead of an optimal policy. In this way the benefits of the very model
may be evaluated. Kristensen and Thysen (1991) have used this approach
in order to evaluate the value of culling information in commercial dairy
herds in the presence and absence of a milk quota.

The equations are also useful in calculating other technical results under
a given policy by redefining r{ and mj. A few examples from a dairy cow
replacement model are:

1) If ri is the milk yield of a cow in state i under policy s, and m{ is the
stage length when state i is observed under policy s, then g* is the average
milk yield per cow per year under policy s.
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2) Let ri=1 if state i represents the purchase of a heifer and zero otherwise.
Let m! be defined as in 1. Then g° is the annual replacement rate
under s.

3) Let =1 if a calving takes place and zero otherwise. If mj is defined
as in 1, then g° is the average number of calvings per cow per year
under s.

4) Let ¥=n and mi=1 if a calving takes place after a calving interval of
n weeks, and both zero otherwise. Then g° is the average length of the
calving interval under s.

3. Interpretation of relative values

The unknowns f5, ...,/ in the equations in Step 2 of the iteration cycle of
Section 2 are called the relative values of the states in Q={1, ... ,w}. In this
section we shall discuss the practical interpretation of the relative values.
For convenience we shall restrict ourselves to the ordinary completely
ergodic Markov processes of Section 2, but similar interpretations are easily
given in the hierarchic case of Section 4.

Define R§(w) as the total expected reward until state w is reached the next
time under the policy s when the present state is i. Similarly Mj(w) is the
analogous total expected physical output. By simple but tedious arguments
it can be shown that

Ji=Ri(w) — g Mi(w). (7

The practical interpretation of equation (7) is that in equation (6) state w
is defined as the zero state. If we start from any other state i, the process
will differ from a situation where we start from state j#i until state w is
reached the first time. In state w the relative value f;} is zero, and in front
of us we have an infinite process where the average rewards per unit of
physical output are g°. Thus the whole difference in profitability between
state i and state j concerns the initial period until state w is reached the first
time. If R§(w)>g*Mi(w), it means that the average rewards per unit of
physical output in the initial period are larger than g°. Thus the relative
value of state i is larger than f$=0. Similarly, if Rj(w)<g*Mj(w), we have
that ff<f5=0. In words, the relative value f;* equals the amount of money
that a rational person is just willing to pay in order to start in state i rather
than state w.

The relative values are useful when we want to investigate the conse-
quences of deviating from the optimal policy. Suppose that we have deter-
mined the optimal policy s. In a replacement model, for instance, the typical
actions are ‘keep’ and ‘replace’. For convenience we assume that only these
two actions (referred to as ‘1’ and ‘2’ respectively) are possible. At the
present stage we consider for some reason to deviate from the policy s, but
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during the following stages we intend to follow s. If we take action 1 at the
present stage, and the state is i, the relative value is

w
fi=rt-mig+ ¥ ol
=
and if we take the action 2, the corresponding relative value is
w
fR=rt=mig+ 3. iy
f=

Thus the difference
=117 ®)

is equal to the gain from taking the action 1 rather than 2. If J5 is negative,
it means that it is better to take action 2 than 1. In a replacement model
the difference 6f can be used for ranking of states, starting with negative
o6;, where replacement is optimal, and ending with large positive &;, where
it is certainly most profitable to keep. In such a model 65 is called the future
profitability of state i under the policy s. For an example of the application
of future profitabilities in a dairy cow replacement model under milk quotas
reference is made to Kristensen (1989).

4. Hierarchic Markov processes

4.1. Notation and problem formulation

In Kristensen (1988) a new notion of a hierarchic Markov process was
introduced. We shall now describe how the new criterion of optimality is
used with such processes.

A hierarchic Markov process is a series of Markov decision processes
called subprocesses built together in one Markov decision process called the
main process. A subprocess is a discrete time Markov decision process with
N stages and a finite state space Q,={l,...,w,} for stage n, 1 <n<N. The
action set D, of the n’th stage is assumed to be finite, too. A policy s of a
subprocess is a map assigning to each stage »n and state i in Q, an action
s(n, i) from D,. The set of all possible policies of a subprocess is denoted
I'. When the state i is observed at stage n and the action d is taken, a reward
r{(n) is gained. The corresponding physical output is denoted mf(n). Let
pl(n) be the transition probability from state i to state j where i is the state
of the n’th stage, j is the state of the following stage, and d is the action
taken at stage n. In this formulation the transition matrix Pf,={p,§j(n)} is not
necessarily a square matrix. Naturally p;(n) >0 for all i, j, n and s, and for
alli,nand s

W+

2, pifn)=1.
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The vector Py=(p,(0),...,p,1(0)) gives the probability distribution of the
states at stage 1. As before, the parameters may be superscripted by actions
or policies as convenient.

The total expected reward function f°(n) represents the total expected
rewards from the rest of the process when the present state and stage are i
and n respectively, and the policy s is followed. The function is defined as
follows for given s, i and n:

fim)=ri(n), n=N

ffm)=ri(n)+ 21 pimffn+1),n=N—-1,..., 1. 9)

The total expected output function Aj(n) is defined completely analogously
with equation (9). The only difference is that f'is replaced by A, and r by m.
Assume that we have a set of v possible subprocesses. The main process
is then a Markov decision process with an infinite number of stages and the
finite state space {1, ... ,v}. Each stage in this process represents a particular
subprocess. The action sets of the main process are the sets I',, a=1, ... ,v,
of all possible policies of the individual subprocesses (to avoid ambiguity
the states of the main process will be denoted by Greek letters a, f etc.). A
policy ¢ is a map assigning to each state a of the main process an action
o(a) from T,. The transition matrix of the main process has the dimension
vx v, and it is denoted ®={¢,z}. The transition probabilities are usually
assumed to be independent of the action taken. The reward f;7 in state o of
the main process is defined from the function f;° of the o’th subprocess:

W,
fi= i; p(0)f*(1), s=a(a), (10)

where the parameters of the right hand side of equation (10) are those
belonging to the o’th subprocess. Similarly the physical output in state « is
given as

he= z PUOY(1), 5= 0(a). (1)

Since the main process is an ordinary Markov decision process, the iteration
cycle described in Section 2 can in principle be used directly for optimization.
In practice Steps 1 and 2 are easily carried out, but Step 3 is prohibitive
because of the extremely large number of alternative actions s in I, (as
mentioned above s is an entire policy of the «’th subprocess). Thus an
alternative version of Step 3 is needed. In the following section we shall
discuss a method to circumvent this problem.

4.2 Optimization

Using the notation of the main process, Step 3 of the iteration cycle involves
finding the alternative s’ that maximizes

67



68

Anders R. Kristensen

=K+ 3 bk (12)

where F7j is the relative value of state § in the main process under the policy
. Since the last term of the expression does not depend on s, the problem
readily reduces to finding the alternative, that maximizes

Ja g’ (13)

The reduction from equation (12) to (13) is computationally convenient,
and in fact this causes a more simple optimization cycle than under the
discounting criterion as described by Kristensen (1988). The symbols
J3 and A refer to the total expected rewards and total expected physical
outputs, respectively, during the entire subprocess o under the policy s.

Now, define a new Markov decision process with the same state and
action spaces and the same transition probabilities as the «’th subprocess.
The rewards of the new process are defined as

af(n)=ri(n)—mi(n)g". (14)

The new process is defined to run over N stages just as the original sub-
process. It is easily seen that a policy that maximizes the total expected
rewards from the new process also will maximize the expression (13). Thus
such a policy can be found by means of the well known value iteration
method using the recurrence equations

A(n)= mjix{a:-’(n)}, n=N
Wyt (1 5)

A,-(n)=m§1x{af(n)+ Y. pii(mA(n+ 1)}, n=N—-1,...,1.

j=1
The actions defining the policy s are defined step by step choosing in each
state the one that maximizes the right hand side of equation (15). The
symbol A4;(n) denotes the total expected rewards from the remaining part of
the new process, when it presently is at the beginning of stage n.
If we use the recurrence equations (15) in Step 3 of the iteration cycle, we

arrive at the following formulation if we change the notation back to that
of the subprocess:

1) Choose an arbitrary policy o. Go to 2.
2) Solve the following set of v+ 1 linear simultaneous equations for g° and

.. FS:
gl R+ Fi=f7+ Z GopFe, a=1,...,v (16)
f=1
F;=0 (17)
Go to 3.
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3) For each subprocess «, find by means of the recurrence equations
W) =max{ré(n) — mi(g"), n=N

Wr|+1

Ta,i(n) = mdax {r:i(n) - m:_‘(n)gﬂ + z p‘iij(n)ra,j(n + 1)}5 n=N— 1, (R} 1.
j=1

a policy s of the subprocess. The action s'(n, i) is equal to the d’ that
maximizes the right hand side of the recurrence equation of state i at
stage n. Put a'(0)=s'fora=1, ... ,v. If ¢’ =g, then stop, since an optimal
policy is found. Otherwise redefine ¢ according to the new policy (i.e.,
put c=¢") and go back to 2.

In large models it may be difficult to choose a relevant initial policy in
Step 1. In that case the cycle may be initiated in Step 3 by choosing an initial
value for g°.

Just as equations (5) and (6) could be used in a general way to calculate
the economic consequences and a variety of technical results under any
policy in the case of an ordinary Markov process, exactly the same applies
to the equations of Step 2 of the hierarchic algorithm.

5. The new criterion compared to others

In the literature two different criteria of optimality (the discounting and the
average rewards criterion) have been considered for infinite stage Markov
decision processes. Optimization cycles for both were described already by
Howard (1960) for ordinary Markov decision processes.

The criterion most frequently used in animal replacement models is the
discounting criterion where all rewards are discounted to the beginning of
the planning horizon and the total present value is maximized. If the discount
factor is less than unity, the total present value over an infinite number of
stages will be finite, and an optimal policy exists. No physical output m; is
considered. An optimization cycle for the hierarchic case was developed by
Kristensen (1988).

Under the average rewards criterion the optimization cycle ensures that
the average rewards per stage are maximized. Provided that all stages are of
equal duration, this is the same as maximization of average rewards over
time. No physical output is considered and no optimization cycle has been
published in the hierarchic case. Furthermore no discounting takes place.

The criterion used in this paper is in fact a generalization of the average
rewards criterion. If mi=1 for all s and i (or mi(n)=1 for all s, i and » in
the hierarchic case) the criterion of this paper reduces to the average rewards
criterion. Thus the hierarchic cycle of Section 4 may be used also under the
average rewards criterion just by setting all physical outputs to unity.
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The main difference between the criterion of this paper compared to the
discounting criterion as presented by Kristensen (1988) is that in the latter
a sum of expected discounted rewards is maximized, whereas in this paper
a long run average reward/output ratio is maximized. Furthermore the
equations (5)—(6) and (16)—(17), which are used in the optimization cycles
under the present criterion, are useful in the calculation of a variety of other
technical ratios that may be used to investigate the consequences of any
policy as discussed in Section 2. Because no discounting is involved, the
optimization cycle is also more simple in the hierarchic case under
the present criterion compared to the discounting criterion discussed by
Kristensen (1988).

In order to illustrate the differences between the three criteria we shall
consider a simple numerical example, and for convenience we use an ordi-
nary Markov decision process.

Consider a multicomponent production system (e.g., a dairy herd con-
sisting of individual cows). We shall determine optimal replacement policies
of the individual components under the three criteria.

Assume that each component gives rise to two different kinds of output
items (1 and 2, e.g., milk and calves). We shall represent each component
by a Markov decision process, where the states are defined from the level
of performace in producing output item 1, and we assume that the pro-
duction of item 2 is independent of state. For convenience we shall only
consider three states called ‘bad’, ‘normal’ and ‘good’ each representing the
production of 3, 4 and S units of output item 1, respectively. Each component
is inspected at regular time intervals (stages) in order to determine the state
of operation. After inspection we can choose to keep the component for at
least one additional stage, or we can replace it at the end of the stage at
some additional cost.

If we replace, the new component enters one of the three states with equal
probability. If the component is kept, the probability of staying in the
present state is 0.6, and if the present state is ‘normal’ the probability of
transition to one of the other states is 0.2 each. The probability of transition
(if kept) from ‘bad’ or ‘good’ to ‘normal’ is in both cases 0.3, and from
‘bad’ to ‘good’ and vice versa the probability is 0.1.

The relation between the rewards (net revenues) and physical outputs
(item 1) is assumed to be as follows (decision 1 = ‘keep’ and 2 = ‘replace’):

ri=cymi+cyn—cy, i=1,23 (18)
and
rt=cmitcn—cy—cy, i=1,2,3, (19)

where ¢; and ¢, are the marginal net returns of output item 1 and 2,
respectively, n is the production of item 2, ¢ is the fixed cost per stage of
operating a component and ¢, is the replacement cost. Since replacement is



Markov decision processes

carried out at the end of a stage, we assume that m} =m} for all i. The
resulting parameters of the Markov decision process assuming c; =1,
c,n—c3=2 and ¢, =0.5 are summarized in Table 1.

Optimal replacement policies were determined under all three criteria and
the results are shown in Table 2, which gives the optimal actions, the
associated relative values of states and the values of all three objective
functions under the optimal policies. In the following we shall denote as,
for example, r-k-k a policy defined as replacing in state ‘bad’ and keeping
in states ‘normal’ and ‘good’, respectively.

As it appears the discounting and the average rewards criteria give rise
to the same optimal policy r-k-k (and thus the same values of the objective
functions). Furthermore the relative values of states are almost equal. The
similarity is probably caused by the infinite horizon combined with the
recurrent nature of the process (i.e., the state presently observed will sooner
or later be observed again). Under such conditions the two criteria express
almost the same. It should be noticed from the relative values under these
criteria, that the names ‘bad’, ‘normal’ and ‘good’ of the states are quite
suitable.

Table l. Parameters of the Markov decision process of the numerical example

State’ Keep Replace
Pij mi Pij mi o orf
j=1 j=2 j=3 j=1 j=2 j=3
i=1 0.6 0.3 0.1 3 5 1/3 1/3 1/3 3 4.5
i=2 02 06 02 4 6 3 13 13 4 55
i=3 0.1 0.3 0.6 5 7 1/3 1/3 1/3 5 6.5

1. States 1, 2, and 3 are ‘bad’, ‘normal’ and ‘good’, respectively.

Table 2. Optimal replacement policies (k=keep, t=replace, kr=keep or replace), optimal
relative values of states and values of the objective functions using the parameters of
Table 1 under three different criteria of optimality

Criterion Relative values® Present Av. rew. per
value
Bad Normal Good Stage Output
Discounting +3.24 - 1.77* 0.00* 60.65 6.094 1.455
Av. reward/stage —3.34 -1.91* 0.00* 60.65 6.094 1.455
Av. reward/output 2.00* 1.00% 0.00% 57.30% 5.719* = 1.500

1. Under the discounting criterion the relative value is defined as the present value of state i
minus the present value of state 3 (‘good’).
2. If ‘replace’ in state ‘good’, otherwise 60.00 and 6.000.
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The criterion of the present paper (average rewards/output ratio) is funda-
mentally different in its consequences. In this situation two policies are
optimal: k-k-k and k-k-r. Further the relative values of states 1 and 2 are
now higher than that of state 3, so in fact the names ‘good’ and ‘bad’ should
really be interchanged under this criterion. The criterion is relevant if a
production quota is imposed on output item 1. In that case the total net
revenue from production would equal 1.500 Q, where Q is the size of the
quota, under the present criterion. If the optimal policy of one of the other
criteria was used, the total net revenue from production would only amount
to 1.455 Q. In both cases the number of components in operation should
be adjusted to meet the quota. The number of items produced by a compo-
nent per stage under a policy is calculated as (average rewards/stage)/
(average rewards/output), i.e., 5.719/1.500=23.813 under policy k-k-r, and
6.094/1.455=4.188 under policy r-k-k.

In this very simple example, there were really no need for optimization
cycles since the total number of policies is only 8. We could just have
calculated the value of all three objective functions under all policies, and
for each criterion choose the policy that maximizes the relevant objective
function. As an additional illustration of the different consequences of
policies under the three criteria these calculations were carried out. The
policy ranking lowest was in all cases r-r-r. The values of the objective
functions were defined as 100 for this policy, and other policies were
expressed relatively to that.

In Figure 1 the relative ranking of all policies is shown under the three
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Figure 1. Relative ranking of policies under the three criteria of optimality
(policy r-r-r=100)
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criteria. Again the discounted and the average rewards criteria show almost
exactly the same pattern over policies, while the pattern of the average
rewards/output criterion is very different.

6. Discussion and applications

It is an accepted fact that profitability must be maximized from the most
limiting input or output factor. Therefore the original purpose of the work
behind this paper was to become able to maximize net revenue per kg milk
produced in a dairy cow replacement model to be used under milk quotas
(Kristensen 1989).

The model is of the hierarchic type, and the iteration cycle of Section 4
has successfully been used for optimization. The total number of state
combinations (a, i) of the model equals 180080. In a test, an optimal solution
was calculated in 100 cases representing different price and production
conditions. The number of iterations required ranged from 3 to 6. If the
number of iterations is compared to the size of the model we can conclude
that the iteration cycle has proved to be very efficient in practical
applications.

Regardless of the original purpose of the iteration cycles of this paper
they are believed to be useful also in other areas than dairy cow replacement
under milk quotas. The problem of production under limitations is general,
and anywhere a Markov decision process is used for optimization the
iteration cycles of this paper may be relevant.
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The usual criterion of optimality to be used in dairy cow replacement models has typically
been the maximization of total discounted net revenue per cow. In a situation with herd
individual milk quotas, however, the theoretically correct criterion is the maximization of
net revenue per kg of milk produced. Optimal replacement policies, future profitabilities,
and rankings under the two criteria are compared. It turns out that culling should be less
intensive under milk quotas because of a smaller variation in future profitability. Consider-
able differences in future profitability and ranking are found, and it is conluded that it is
important that the correct criterion is used when milk quotas are in effect.

INTRODUCTION

Recently the EEC has introduced herd individual milk quotas in all member countries
which impose restrictions on the amount of milk to be produced per year. Before the
quotas were introduced, the limiting restriction was typically a maximum herd size set by
stable capacity. The new situation may affect the optimal dairy cow replacement policy. A
common trait of recent replacement models (van Arendonk, 1985, 1986; van Arendonk &
Dijkhuizen, 1985; Kristensen, 1986, 1987 a, 1988) is that the criterion of optimality is the
maximization of the expected present value of future rewards (discounting criterion).
Since the models handle one cow and its future successors this is equal to the maximiza-
tion of net revenue per cow.

Under milk quotas this criterion is no longer appropriate since economic efficiency in
general should be expressed in terms of the most limiting restriction (Barnard & Nix,
1973). A better criterion is the maximization of net revenue per kg of milk produced
(average criterion). The aim of the present paper is to introduce this criterion in a dairy
cow replacement model based on dynamic programming. Furthermore the paper will
investigate to what extent the criterion of optimality influences the optimal replacement
and ranking of dairy cows, or in other words, whether the replacement and ranking of
dairy cows depend on the presence or absence of milk quotas. It is not the purpose of the
paper to discuss the application of replacement models in general or to evaluate dynamic
programming as a tool in this context. For such discussion reference is made to van
Arendonk (1984) and to the models mentioned above. Neither is it the purpose to discuss a
general adjustment to milk quotas (by e.g. reduced feeding). It is assumed that feeding-and
biological parameters are the same in both situations and that only the replacement policy
is changed.

MATERIAL AND METHODS

The model
The model to be used in this study is based on a hierarchic Markov process as it is
described by Kristensen (1988). The idea of such a model is that a series of Markov
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decision processes called subprocesses are built together in one Markov decision process
called the main process. The structure is specially designed to fit replacement models
where considerable computational advantages are obtained in large models. For a discus-
sion of Markov decision processes in general, reference is made to Howard (1960).

The basic biological parameters to be used in the model are published by Kristensen
(1986). In the model decisions concerning replacement are made regularly every fourth
week from first calving of a heifer until 40 weeks after sixth calving. Changes in production
level and state of pregnancy are assumed always to take place according to probability
distributions at 16, 24, 32, or 40 weeks after a calving. In the periods between these points
the milk yield is predicted in a deterministic manner.

State variables are defined in the main process as well as in the subprocesses. In the
main process the only state variable is the genetic class (5 levels) defined from the relative
breeding value of the father as described by Kristensen (1986). In the subprocesses (there
is one subprocess for each genetic class) the state variables are the milk yield of previous
and present lactation (15 classes each) and the length of the calving interval (8 classes: 44,
48, ..., 72 weeks where ‘44 weeks’” covers all intervals up to 46 weeks, ‘48 weeks”’
covers intervals more than 46 weeks up to 50 weeks etc.). The classes of milk yield are
defined from the milk yields in kg 4% milk adjusted for lactation number, stage of
lactation, herd level, length of calving interval, and the genetic class, as described by
Kristensen (1986). The time interval between two decisions is called a stage, and since
decisions are made every fourth week, all stages are of equal length. The possible
decisions are to replace the cow or to keep it at least 4 weeks. As in similar models it is
assumed that a replacement heifer is always available. A combination of values of genetic
class, milk yield of previous lactation, milk yield of present lactation, calving interval,
lactation number, and stage of lactation defines a state in the model. Apart from the states
defined in this way, 3 additional states representing replacement, disease and infertility are
included in the model in the same manner as described by Kristensen (1987 a). The total
number of states is 180080 and only the formulation as a hierarchic Markov process makes
it possible to obtain exact solutions to a model of that size. In Table 1 the characteristics of
the model are summarized.

Optimization and ranking

A replacement policy is defined as a map assigning to each state of the model a decision
(“*keep” or ‘‘replace’’). An optimal policy is a policy that maximizes a predefined
objective function. In a situation without milk quotas the value of the objective function is

Table 1. Characteristics of the dairy cow replacement model

Number of stages in each lactation 11-18°
Number of lactations considered 6
State variable of main process
Genetic class? S classes
State variable of subprocesses
Milk yield® of previous lactation 15 classes
Milk yield® of present lactation 15 classes
Length of calving interval 8 classes
Total number of states 180080
Decisions ‘‘keep’’ or ‘‘replace”

¢ Depending on the length of the calving interval.
? Defined from the relative breeding value of the father.
¢ Kg 4% milk adjusted as explained in the text.
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the present value per cow (discounting criterion). In this case the optimization technique
from Kristensen (1988) is applied. The ranking criterion is the future profitability defined
as the difference in present value when a cow is kept and when it is replaced. If the optimal
decision is to replace a cow the future profitability is negative.

Under milk quotas the values of the objective function is the long-run average net
revenue per kg milk produced (average criterion). The optimization technique used in this
case is briefly described in the appendix. Under these circumstances, the cows are ranked
on the future profitability defined as the difference in relative value when the cow is kept
and when it is replaced. The relative value in turn is equal to the economic value of a cow
in a specific state measured as the deviation from a fixed basis.

In neither case the question of optimal herd size is answered. Under the discounting
criterion the optimization assures that the net revenue per cow is as large as possible, and
under the average criterion it is assured that each cow produces milk as cheaply as
possible. If adjustment of herd size is necessary the ranking of cows is used in both cases.

Technical and economical conditions

The two criteria of optimality were compared under the production level, prices and
interest rate appearing in Table 2. They are intended to refer to the situation of a typical
Danish dairy herd. The net revenue is calculated as revenues from milk, calves and culled
cows minus costs of feeds and heifers for replacement.

RESULTS

Optimal replacement policies

In Table 3 the optimal policies under both criteria are characterized by a number of key
figures. As it appears the culling is much less intensive under the average criterion. The
average time from first calving to replacement is 1.7 years under the discounting criterion
and 2.6 years under the average criterion. As a result of the higher replacement rate under
the discounting criterion the number of calvings per cow per year is 0.15 higher than under
the average criterion. Also the milk yield per cow per year is largest under the discounting
criterion. As expected the net revenue per kg of milk is largest under the average criterion
since this is the objective which is maximized under that criterion. The difference repre-
sents 2.5% in the net revenue. This figure is a direct measure of the costs of using the
traditional discounting criterion in a situation with milk quotas. If the herd quota is 700 000

Table 2. Technical and economic conditions

Prices (Dkr)

Milk (kg FCM) 2.40
Basic food (SFU?) 1.30
Food for milk production (SFU) 1.45
Calf 1 400.00
Heifer 9 000.00
Young cow until 2nd calving
(kg live weight) 11.50
Older cow (kg live weight) 11.00
Interest rate? (%) 3
Herd level® (FCM) 5 800

¢ Scandinavian Feed Units.
¢ Ounly discounting criterion (corrected for inflation).
¢ Average milk yield of the first 40 weeks of a lactation. Adjusted to 1st lactation level.
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kg milk (approximately 100 cows) the difference in net income before tax equals 22400 Dkr
per year. Not surprisingly the net revenue per cow per year is largest under the discount-
ing criterion. The difference of 220 DKr is a direct measure of the costs of using the average
criterion in a situation without milk quotas. In a herd with 100 cows this cost is 22000 Dkr
per year.

Future profitability and ranking

The ranking of states (cows) is based on the future profitability. In Table 4 the variation in
future profitability (over states) under both criteria is described by percentiles. In the same
manner the absolute difference in future profitability is shown. Differences in future
profitabilities are not necessarily tantamount to differences in ranking, but may also reflect

Table 3. Comparison of results from the optimization under both criteria

The discounting criterion corresponds to a situation without milk quotas and the average criterion to a
situation with quotas in effect. The results are under the optimal policies

Criterion
Discounting Average Difference
Annual replacement rate (per cent) 58 38 20
Kg 4% milk per cow per year 7 333 6 989 344
Calvings per cow per year 1.29 1.14 0.15
Daily milk yield (first 24 weeks),
kg 4% milk
1st lactation 22.4 21.4 1.0
2nd lactation 26.9 25.3 1.6
3rd lactation 29.6 27.8 1.8
4th lactation 30.8 29.3 1.5
Length of calving intervals, days 373 381 -8
Net revenue per kg milk, Dkr 1.301 1.333 —0.032

Net revenue per cow per year, DKr 9 538 9318 220
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different levels and/or different standard deviations. In order to elucidate to what extent
the differences in future profitability also reflect differences in ranking, the future profit-
abilities under the average criterion were standardized to have the same mean and
standard deviation over states as under the discounting criterion. The following transfor-
mation was used:

Pr=(pa—mpls) X s+ my, M

where p* is the transformed future profitability and p, is the original value under the
average criterion. The parameters m,, m,, s, and s, are the means and standard deviations
over states under the average and discounting criterion respectively. The transformation
(1) does not affect the ranking of states. If p, (the future profitability under the discounting
criterion) and p* have different values in a state, it is a direct measure of different ranking
under the two criteria. The percentiles of p,—p*are shown in the last column of Table 4.

In order to compare the variation in future profitabilities under the two criteria some
plots showing the average future profitabilities for each level of state variables were made.
In Fig. 1 the future profitabilities are plotted against milk yield expressed as the deviations
from mean measured in units of standard deviation. Fig. 2 shows the future profitabilities
40 weeks after calving as functions of the calving interval.

DISCUSSION

The less intensive culling under the average criterion is a consequence of the lower
variability which is clear in Figs. 1 and 2. To understand the different slopes of the curves
in Fig. 1 we shall consider the fundamental conditions of production in the two situations.
When the limiting restriction is herd size (no quota) the only way of increasing net revenue
is by improving the production efficiency of the individual cow. Since a way of obtaining a
high production efficiency is a high milk yield this property will be given large weight. On
the other hand, if quotas are in effect, we can choose between many cows having low milk
yield and few cows having high milk yield. There is not the same need for exploiting each
cow as intensively as when herd size is the limiting restriction. Therefore the advantage of
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Table 4. Comparison of selected percentiles of future profitabilities and absolute differ-
ences in future profitabilities of states under the discounting and the average criterion
(Dkr)

Future
profitability Absolute differences
Future Standardized
Disc. Aver. profitability future profitability
Percentiles P Pa [pa—Pal lpa—p%I*
100 6 801 3 660 3411 2922
90 3225 2170 1372 1220
75 2 398 1 864 1034 878
50 1 358 1482 644 503
25 297 1042 312 228
10 —-226 570 129 91
0 -909 —235 0 0

® ph=(p,—my)ls)Xs;+m, where m,, m,, s, and s, Tepresent the mean and the standard deviation of
future profitabilities over states under the average and discounting criterion respectively.

high milk yield is smaller. As we see from Table 3, the result is lower milk yield per cow
under the average criterion.

In Fig. 2 the smaller variability under the average criterion can be explained by
arguments similar to those given concerning milk yield. Also in this case the resulting
larger calving intervals under the average criterion are confirmed by Table 3.

If we turn to Table 4 we find that the difference in future profitability of a state under the
two criteria may be as large as 3411 Dkr, and in 25 % of all states the difference exceeds
1034 Dkr. Since the future profitability is an important source of information of a dairy
farmer, the differences tell that it is of vital importance that the correct criterion is used.
The last column in Table 4 expresses the economic significance of different ranking and it
is obvious, that also the ranking of cows in a herd must be based on the correct criterion.

Based on the results we are able to conclude that the two criteria give rise to fairly
different replacement policies. Because of a smaller variability in profitability of cows the
culling is much less intensive under milk quotas. Also the differences in future profitability
and the ranking of states are considerable. It is therefore important that the optimal
replacement policy under milk quotas is calculated using the average criterion.

All results are based on the assumption that the presence (or absence) of the milk quota
is expected to be permanent, If the quota is expected to be only temporary the results may
be affected to an extent depending on the duration of the quota situation. If it is in effect
during the entire expected lifetime of a cow, all results still hold because the differences in
future profitabilities only arise from the remaining lifetimes of the cows in question (when
a replacement takes place, the system is ‘“‘reset’’). If the quota is abolished already after
one or two years, the situation is much more complicated, and no calculations have been
performed to quantify the effect on the results under such circumstances.

APPENDIX

Maximization of net revenue per kg milk using
a hierarchic Markov process

In the following only the optimization algorithm is given. For a deduction reference is
made to Kristensen (1987 b). For a general discussion of hierarchic Markov processes
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reference is made to Kristensen (1988) where also the algorithm of the discounting
criterion is given.

Let ¥(n) and m¥(n) be the net revenue and milk yield respectively of state i at stage n (a
stage is a time interval) when the decision k is made (kK = ‘‘replace” or “‘keep’’) in a
subprocess. The transition probability from state i at stage n to state j at stage n+1 under
the decision & is denoted p{; n) in a subprocess. A set of decisions of all states at all stages
in all subprocesses is called a policy and it is denoted S. Finally the net revenue per kg
milk under a certain policy § is denoted g5.

The total time of a subprocess is equal to the herd life of one cow in the model. The
expected revenue R} and milk yield M; of an entire subprocess [ (a cow) under a policy S
are calculated recursively using

R¥(n) = ri(m)+ D, plim) RS(n+1),

J
where k is the decision defined by the policy S. The R} is defined as
R =Y pORI(),

where p1(0),...,p1(0) are the probabilities of the states at the first stage of the Ith subpro-
cess. The value of M7 is calculated similarly. In the model there are 5 subprocesses each
having a set of parameters r{f(n), m,’-‘(n) etc. Each subprocess represents a genetic class.
Finally g; is the probability of the Ith genetic class. We are now able to give the
optimization algorithm as an iteration cycle in three steps:

1) Chose an arbitrary policy s. Go to 2.
2) Solve the following set of 5+1 linear simultaneous equations for g% and A3,...,hs:

5
SMI+h =R+ q.hf, 1=1,..5
k=1

hS =0.

Go to 3.
3) For each state i of each stage n of each subprocess [, find the decision &’ that maximizes

rff(n)—mf-‘(n) g5, n=N

Am)—mkn) g5+ >, phu(n+1), n=N-1,...,1,
j

and denote the maximum value of the expression u;(n). The parameters mentioned refer to
the Ith subprocess. The set of decisions &' defines a new policy §'. If §'=S then stop, since
an optimal policy is found. Otherwise redefine S according to the new policy (i.e. put
S=5") and go back to 2.
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Summary

The observed level of milk yield of a dairy cow or the litter size of a sow is
only partially the result of a permanent characteristic of the animal; temporary
effects are also involved. Thus, we face a problem concerning the proper
definition and measurement of the traits in order to give the best possible
prediction of the future revenues from an animal considered for replacement.
A trait model describing the underlying effects is built into a model combining
a Bayesian approach with a hierarchic Markov process in order to be able to
calculate optimal replacement policies under various conditions.

Keywords: replacement, animal, Bayesian updating, Markov decision
programming.

1. Introduction

In any production based on the operation of an asset of significant value,
the determination of an optimal lifetime of the asset is important in order
to maximise the profit from the production, which in this paper is assumed
to be the overall objective of the manager. The considerations are relevant
no matter whether the asset is a dairy cow, a farm building or some kind
of industrial equipment, but the way of solving the problem may vary
considerably, depending on the individual situation. Most often the asset
will be replaced by a new asset of the same or at least a similar kind. In
that case the present asset is only a link in a chain of assets. Then we have

* This research was carried out as part of Dina, Danish Informatics Network in the
Agricultural Sciences.
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to consider what kind of objective function to use in order to meet the
overall objective of profit maximisation.

In some cases it is relevant to maximise the total profit of the asset during
the entire lifetime. That applies, for instance, when the asset itself is a scarce
resource. A case in point is the determination of the optimal age at slaughter
of fattening bulls in a dairy herd, where the main activity is milk production.
If the dairy farmer does not buy bull calves at the market (for instance
because of infection risk) he will only have the bull calves provided by the
dairy cows of the herd. If the housing capacity is sufficient, the bull calves
are a scarce resource, and the total profit is maximised if the net returns per
animal during its whole lifetime are maximised. We shall refer to this situation
as the single asset situation.

Another situation is when new assets are permanently available at the
market. In that case the total profit is not maximised by maximising total
net returns per asset. A more relevant criterion is here the maximisation of
either average net returns over time or the total discounted net returns (i.e.
the present value) of the entire chain of assets. In both cases the time horizon
may be finite or infinite, whichever is relevant. An infinite horizon is just an
abstraction indicating that the time of termination (the last link of the chain)
is unknown, but at least ‘far’ ahead. We shall refer to this situation as the
asset chain situation.

Finally, we shall consider a situation where a restriction is imposed on
the production. It may be in the form of either a production quota or a
limited supply of an input factor. In that case the total profit is maximised
by the maximisation of average net returns per product or factor unit. We
shall refer to this situation as the quota situation.

A more formal discussion of possible objective functions is given by
Kristensen (1992a). The choice of objective function depends only on the
conditions of production. It does not matter what kind of asset we are
dealing with. If we turn to the method used in the maximisation of the
objective function, it will depend very much on the nature of the asset. The
classical replacement theory developed by pioneers like Preinrich (1940) and
Terborgh (1949) typically assumes that all functions and parameters describ-
ing the problem are completely known in advance, and that no random
variation is involved. The implicit items considered comprise machinery and
other kinds of industrial equipment. The functions and parameters represent-
ing the problem are used for deduction of general replacement rules based
on variants of the marginal net revenue approach.

As opposed to machinery or industrial equipment, the present study is
part of a larger research project dealing with the animal replacement problem
in agricultural production. A relevant question to ask is, therefore, in what
way the animal problem differs from the general set-up. Based on a study
by Ben-Ari et al. (1983) the main difficulties of the animal replacement
problem may be summarised as:
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(1) Uniformity. The traits of an animal are difficult to define and measure.

(2) Variability. The random variation of each trait is relatively large.

(3) Reproductive cycle. The production of for instance cows and sows is
cyclic. It has to be decided in which cycle to replace as well as when to
replace inside a cycle.

(4) Herd restraints. Animal production is performed in herds. There may
be restraints that apply to the herd as a whole and not to the individual
animal. Examples are a limited supply of heifers or gilts, limited housing
capacity or a milk quota.

Because of the variability, Markov decision programming had already
been applied to the dairy cow replacement problem by Giaever (1966). In
an evaluation of techniques van Arendonk (1984) concluded that in dairy
cow replacement this method should be used in preference to the marginal
net revenue approach. Also, the method directly solves the problems caused
by the reproductive cycle as shown by Kristensen and Ostergaard (1982) as
well as van Arendonk (1985b). The only problem concerning variability and
cyclic production is that in order to cover the variability in traits, the state
variables (traits) have to be represented by many levels, and to deal with the
cyclic production, a state variable representing the stage of the cycle has to
be included. Both aspects contribute significantly to an explosive growth of
the state space. Therefore, we face a dimensionality problem. Though all
necessary conditions of a Markov decision process are met, the solution is
prohibitive in practice even on modern computers.

The problem of herd restraints is important. In dairy cattle two particular
restraints should be considered. One is a limited supply of heifers when the
dairy farmer only uses home-grown heifers as replacements. In that case a
simple comparison of the animal in production with a replacement is no
longer valid. Instead we face a much more difficult problem of choosing the
optimal composition of animals from the available population of cows in
production and heifers for replacement. The other restraint is the milk quota
which is imposed on all dairy herds of the EC.

The overall objective of the animal replacement research project is to
adapt the Markov decision programming techniques in order to be able to
cope with the problem in a satisfactory way. The problems to be solved
(totally or partially) have been identified as the dimensionality problem,
herd restraints and uniformity. In order to circumvent the dimensionality
problem, a new notion of a hierarchic Markov process was introduced by
Kristensen (1988) and applied to the dairy cow replacement problem by
Kristensen (1987, 1989). The technique may be applied in the single asset
situation, the asset chain situation and the quota situation.

Both herd restraints mentioned above have been studied in the project.
The milk quota restraint was discussed by Kristensen (1989) based on a
technique described in Kristensen (1991) of maximising average net returns
per kg milk produced. A limited supply of replacement heifers was discussed
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by Ben-Ari and Gal (1986), who developed a technique called parameter
iteration. The method was modified and further developed by Kristensen
(1992b). In both studies on the latter restraint, a herd model was based on
an underlying single animal model, which in the study by Ben-Ari and Gal
(1986) was an ordinary Markov decision process and in the study by
Kristensen (1992b) was a hierarchic Markov process.

Only a solution of the uniformity problem concerning the definition and
measurement of traits remains to complete the project. The solution of that
problem is the objective of the present study. In any replacement problem
a good prediction of the future net revenues (or rewards as they are called
in Markov decision programming) is essential. This prediction is based on
the observed traits of the animal, but since the traits are subject to random
variation, we do not know to what extent the observed value represents a
permanent characteristic of the animal or just a temporary fluctuation. In
order to be able to give the best possible prediction of futurc rewards, a
method has been designed which combines the ability of knowledge updating
known from causal probabilistic nets, as described for example by Pearl
(1988), and hierarchic Markov processes. In order to keep the presentation
simple we shall only consider examples where the animal in production is
compared to a standard replacement. However, the technique may just as
well be applied in a herd model under some restraint as discussed above.

For an empirical application of the updating technique in a sow replace-
ment study, reference is made to Jergensen (1992).

2. A model describing a trait of an animal

In this section we shall describe a general model of an animal trait to be
used in replacement studies. The model will form the basis of the further
considerations of the paper.

Assume that the state of an animal is observed at regular intervals called
stages. The state is defined by the values of a number of state variables cach
representing a trait of the animal. We assume that one of the traits (Y,) is
described by the following relation at stage n:

Y,=m(*)+X+e, n=0,...,N, (1)

where m is a known function expressing the expected value of Y, under the
circumstances in question. The circumstances are represented by the argu-
ments of m which may be the value of other state variables (e.g. the age of
the animal, the season, etc.) and/or the average herd level concerning the
trait. The trait itself may, for instance, be the milk yield of a dairy cow or
the litter size of a sow. The symbol X is the combined effect of genetic level
and permanent environment. We assume X to be normally distributed with
the expected value zero and a certain variance o2 representing the variation
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across the population. The symbol e, represents the random variation caused
by temporary environmental effects. We assume that e, is normally distrib-
uted with the expected value zero and a certain variance ¢2. The random
variables X and e, are assumed to be independent. Furthermore, the variables
ey, ...,ey of a particular animal are assumed to be independent of the
corresponding variables of the other animals of the herd. Thus all systematic
effects influencing all animals of the herd (e.g. seasonal effects) are assumed
to be included in the function m(+). The sum I, = X + ¢, forms the value of
a state variable.

The relation over time of e, ..., ey is described by a first order autoregres-
sive process, i.e.

en:aen—1+8n, nzla"'aNa (2)

where 0 <a < 1 and ¢4, ..., gy are independent and normally distributed with
the expected value zero and the variance (1 — a?)s?. Furthermore, ¢, is
assumed to be independent of ¢,_; and X forn=1,..., N.

As appears from equations (1) and (2), the permanent effect X varies only
between animals, whereas the temporary random effect e, varies over time
for the same animal. It is obvious that the value of the permanent effect is
very important in the decision of which animals to keep in the long run (c.g.
whether a cow should be kept for an additional lactation) and that the
current value of the random effect ¢, is important in the decision concerning
the optimal replacement time in the short run (e.g. when to replace a cow
inside a lactation). Thus, if the value of X is high, we would probably ignore
a low current value of e, which just represents a temporary crisis. On the
other hand, a sufficiently high current value of ¢, might lead to postponed
replacement of an animal of low permanent value X.

These fundamental observations illustrate that the differentiation of varia-
tion between animals and over time for the same animal is important for
the replacement decision, because it directly influences our expectations
concerning the future net revenues from the animal. The only problem is
that neither the permanent effect X nor the current random effect e, are
directly observable. What we observe are the resulting numerical values
Y., ..., Yy of the trait in question, but since the systematic effect m is assumed
to be known, this is equivalent to the sums I, ..., Iy, where I, = X +¢,. On
the other hand we may have a prior belief in X based on an estimated
variance among animals and possible observations concerning the animal
of characteristics correlated with X. Further, as observations of the sums I,
are gathered they will increase our knowledge of X. If, for instance, all sums
are relatively large for an animal, it implicitly indicates a high value of X
and vice versa.

The trait model (1) and (2) may easily be extended to cover several traits,
each being influenced by several unobservable effects. Assume for instance
that Y), and Y,, are the milk yield and weight of a dairy cow at stage n and
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that each trait is influenced by two unobservable effects. In matrix notation
we may express the relations as follows:

. my(*) Xy X\ (1 €in
= <m2()> - <X21 Xzz) <Cn> * <62n>’ )

where Y;v = (Ylm an),’ and

e a a e . _ &
< 1n>=< 1" 12>< i 1> +< 1n>- @
€2y dz1 422/ \€2n—1 E2n

If, at a previous stage, the cow has been suffering from a specific disease
(e.g. mastitis) that permanently influences the milk yield and weight, the
value of ¢, is —1. Otherwise it is zero. Equation (3) expresses that the
observed milk yield and the weight of the cow are determined partly by
permanent animal-specific effects (X;; and X,,) as in the single trait model
(1), partly by possible permanent negative effects of a previous disease (X |,
and X ,,) and finally by temporary random effects (e,, and e,,). The variables
Xi1, X125, X5, and X,, may be mutually correlated, and e,,, e,, may be
correlated, whereas (X,,,X,,X,;,X,,) and (e,, e,,) are assumed to be
independent.

In the following, only the single-trait model of equations (1) and (2) will
be discussed, but all results may be directly extended to cover the multi-
trait model of equations (3) and (4). For the derivation of the extended
results, a Kalman filter approach as described by, for example, Harrison
and Stevens (1976) is a relevant tool.

We refer to X in equation (1) as the basic state of the animal and to the
sum I, as the current state. Thus the current state is directly observable and
therefore known at any stage, whereas the basic state is unknown. In accor-
dance with common practice in dynamic programming we shall consider
both kinds of states to be discrete, i.e. only a finite number of levels are
considered for each kind. Both X and I, are random variables, which will
be referred to in upper-case letters. Transformed realisations of X and I,,
on the other hand, will be denoted by lower-case letters x € Q4 and i€ Q,,
respectively, where Qy and Q, are finite sets. In other words, if the basic
state i1s x, it means that X is in the interval Jx ;x*] defined as
{y|x~ <y<x"}, where x~ and x* are the lower and higher limit, respec-
tively, of the x’th level of X. In addition to the states defined by levels of I,,,
the state space Q; includes a replacement state representing a situation where
the animal has been culled.

From the assumptions made concerning the normal distribution of X, we
are able to calculate the prior probability p,(0) of any basic state x. At any
stage n we may select an action d € {1, 2} that influences the system. We shall
interpret d =1 as ‘keep’ and d =2 as ‘replace’. For given basic state x and
current state i at stage n, we know the conditional probability ps;;(n) of the
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current state to be j at stage n+ 1 if action d is taken. For d =1 we have
approximately:

priM)=P(jelj ;i ]Ixelx ", x I nieli;i*])
~P(x"+e, 1 €]j it X=x"Al=i")
=Ple,s1€]j —x"jt—x"]| X =x"Ae,=i"—x")
=®((j" —x"—a(i" — x")/(1 —a*)'?a,) (5)
—®((j” —x"—a("—x")/1-a*)a,),

where @ is the distribution function of the standard normal distribution.
The symbol x™ denotes the conditional expectation E(X | X € ]x ~; x* ]), and
analogously for i". If d = 2, the process transfers to an absorbing replacement
state with probability 1.

At stage 0, the marginal probability of a transition from current state i to
j at stage 1 under the action d is calculated as

pi0)= Y pe;(O)p.(0). (6)
x€efy

At each stage the current state i is observed, each time increasing our
knowledge of the basic state x. Our current belief at stage n concerning the
basic state is represented by the probability distribution given by p.(n). If
the current state is i and at stage n + 1 we have observed a transition from
state i t6 state j following the action d, we may use Bayes’ theorem to update
our belief concerning the basic state. The new probability distribution at
stage n+ 1 is calculated as

px(n+ l)sz(n)piu(n)/p?j(n)’ XE.QX, n=0,"',N_ 1. (7)

If the current state i is observed at stage n, and the action d is taken, a
reward depending on the basic state x is gained. This reward is denoted as
rd.(n). We also assume that some kind of physical output m?;(n) is produced
during the stage. In a replacement model, the reward is usually defined as
the net revenue, and the physical output may be defined as the amount of
milk produced by a cow, the litter size of a sow, etc.

3. Causal probabilistic nets

A trait described as in section 2 may be modelled by a causal probabilistic
net (sometimes also referred to as an inference diagram or a Bayes belief net)
as shown in Figure 1. Using the terminology of Tatman and Shachter (1990),
the elements of the net are decision nodes representing variables under the
control of the decision maker, chance nodes corresponding to random vari-
ables or random events, value nodes together representing the arguments of
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0 Chance node . Decision node 0 Result node

Figure 1. The animal model described as a causal probabilistic net

X = basic state

in = observable state at stage n
dn = action at stage n

rn =reward at stage n
mn = physical output at stage n

the objective function of the model and, finally, directed arcs representing
the causal relationships among the nodes. Arcs into a decision node indi-
cate the information which will be known to the decision maker at the time
of decision. Arcs into a chance node indicate which variables condition the
probability distribution of the associated random variable. Arcs into a value
node indicate which variables condition the associated expected value (arcs
from a value node to another node are not allowed).

An advantage of causal probabilistic nets is that they provide a graphical
modelling language very close to ordinary human reasoning, and at the same
time they are mathematically well defined and, therefore, suitable for analyses
derived from traditional probabilistic theory. The main idea is that the knowl-
edge of unobservable nodes (state variables) is updated each time the value
of any other node is observed. Thus, in the example, the model is learning
by successive observations, and step by step knowledge concerning the value
of X is increased. By assuming a decision policy describing which decision
to make for given values of the chance nodes it is possible to calculate the
expected value of the objective function under the policy. This value may be
compared to the expected values under alternative policies, making possible
the identification of an optimal (or at least a satisfactory) policy. During the
last few years there has been extensive research into causal probabilistic nets,
and many results have been obtained on how to collect and distribute evi-
dence over the net (e.g. Pearl, 1988; Jensen et al., 1990).

Possible objective functions are the expected sum. of all rewards under a
policy (ignoring the physical output) or the expected sum of all discounted
rewards under a policy (if the physical output is defined to be the stage
length). Thus, the causal probabilistic net of Figure 1 may be used directly
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for solving the problem described above, as long as the time horizon is
restricted to the N stages. In other words, the causal probabilistic net directly
solves the problem of determining the optimal lifetime of an animal in the
single asset situation as defined in section 1. If, on the other hand, the system
at the end of the N stages is replaced by a new system described in the same
way (and a third system will ultimately replace the second one and so on)
the causal probabilistic net approach will run into trouble, because all time
steps explicitly have to be in the model. Thus, the method does not cover
the asset chain and quota situations mentioned in section 1.

The infinite stage problem is dealt with appropriately by a hierarchic
Markov process, but the problem of that method in relation to the current
problem is that all states must be observable and all parameters must be
known. The possibility of learning from the successive observations is not
directly present. Therefore, a hybridisation of a hierarchic Markov process
and a causal probabilistic net is desirable in order to cover the asset chain
and quota situations as described in section 1.

4. Hierarchic Markov processes

If we want to describe the system by a Markov decision process instead of
a causal probabilistic net, we may take at least two different views. One
possibility is to define it as a Markov decision process with unobservable
states. Such processes are called partially observable Markov decision pro-
cesses, and they have been discussed by Monahan (1982). Another view to
take is to define the process in such a way that the state space is directly
observable, but with unknown parameters. This kind of process is called an
adaptive Markov decision process. It has been discussed in detail by Wessels
(1968) and later by van Hee (1978).

However, in this paper we shall consider the system in the context of a
hierarchic Markov process. A hierarchic Markov process is a series of finite
stage Markov decision processes called subprocesses built together in one
Markov decision process called the main process. The basic formulation,
including an optimisation cycle for the discounting (present value) criterion,
1s given by Kristensen (1988). This criterion covers the asset chain situation.
A similar cycle intended for the quota situation, using a criterion maximising
the average rewards/output ratio, is described by Kristensen (1991). The
hierarchic technique has been developed as a way of circumventing the
dimensionality problem of Markov decision programming, i.e. that practical
problems have a tendency to become very large and, therefore, difficult to
analyse by the usual techniques as mentioned in section 1. In the description
of hierarchic Markov processes it has been assumed that all parameters of
the model are known and that all states in the subprocesses as well as in
the main process are directly observable.
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If, in the specification of traits in section 2, the basic state X had been
directly observable, the formulation as a hierarchic Markov process would
have been straightforward. In that case the state space of the main process
would have been the finite set Qy, and the state space of the subprocesses
would be Q. The parameters of the x’th subprocess would be pi;(n), r;(n)
and m&;(n). Finally, the x’th element ‘of the y’th row of the main process
transition matrix would be p,(0)=®(x"/o,)— ®(x /o,). Under these
assumptions we would be able to determine an optimal solution for the
asset chain situation as well .as for the quota situation.

Since, however, the basic state x is unobservable, we may conclude that
we have a hierarchic Markov process with unobservable main state. But at
each stage we observe the state transition in the subprocess and use the
observation for updating our knowledge of the state of the main process. At
the end of the subprocess, however, the learning stops, because the knowledge
of the old system cannot be used on the new one. In other words, the specific
traits of the present animal will not improve our ability to predict the future
revenues from the replacement.

In the following we shall describe how the updating of knowledge may
be incorporated into the hierarchic process. First, we should notice that, for
a given transition from state i to j in a subprocess, the new probability
distribution of the main stage x is uniquely defined according to equation (7).
Therefore, the imperfect knowledge of the main state does not add any
further random elements to the transitions of the subprocesses. Next, we
should consider whether we know that the distribution of x always belongs
to a certain class of distributions so that it may be sufficiently described by
one or a few parameters. In that case we may replace p,(n), ..., p,(n), where
v is the number of elements in Q,, by these few parameters without losing
any information. The prior distribution of X is normal with known mean
and variance. In the following we shall investigate the posterior distribution
after observations of current states in the subprocesses.

Having observed state i through the sum I, = X + ¢, at stage n, we are
ready to observe the state j defined by the sum I,,; = X + e, at the next
stage. Recalling that X has a fixed (but unknown) value, we find that the
distribt\ltion of I,,, is normal, having the expected value

E(In+1 |X’ In)ZE(X+a(In—X)+8n+1 |X, In)=X+a(In_X) (8)
and variance
VU, | X, L)=V(X +al,— X)+¢&,4,1X,1,) = (1 —a?)o?. 9

From equations (8) and (9) we observe that I,,; has unknown mean but
known variance. Our prior knowledge of the mean is that it is normally
distributed with the expected value

a1 =EX +all, — X)) =(1 — a)E,(X) + al, (10)
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and the variance
gnr1= V(X +a(l,— X)) =(1-a)?*V,(X), (11)

where the index n on the expectation and variance of X refer to the distribu-
tion of X at stage n.

Having taken the observation of I, ,; we may update the distribution of
the mean according to the following equations taken from DeGroot (1970):

Pt 1 =(ﬂn+10';+21 +1,4,(1 _a2)710.e—2)/(0.n—+21 +(1— az)—1ae—2)
(12)

and

0;2+1=03+1(1—02)05/(03+1+(1—az)aﬁ)- (13)

Furthermore, the posterior distribution of I, , is still normal according to
DeGroot (1970). By combining equations (10) and (11) with (12) and (13) we
are able to calculate the parameters of the new distribution of X at stage
n+ I

B, 1(X) = (1 —al)/(1 — @)= (1 — a®)o  E,,(x)
+ e —al, )1 = @)V, (x)/(1 —a*)a? + (1 — a)’V,(x)) (14)

and

Vori(x)= 0;2+1/(1 - a)z
=(1—a*)aZ V,()/(1 — a)*V,(x) + (1 — a*)o?2).

Under the assumptions made we find that if the prior distribution of X is
normal, it will remain normal at all stages. Only the expectation and variance
change over stages, and furthermore the change in variance does not depend
on the observed value of I, ,,! For given prior variance V,(x) = o2 we are
able to calculate the variance at all future stages in advance according to
the recurrent equation (15). If instead of the variance we consider the recipro-
cal value (sometimes referred to as the precision), we easily have

1/Va(x) = n(1—a)*[(1 = a*)o + 1/Vo(x) (16)

showing that the precision increases linearly with n. Thus the variances
should be considered as known in advance, and only the changes in expected
value depend on the observations made. It will not be necessary to keep the
probabilities p,(n). It is sufficient to keep the expected value of X, and the
probabilities p,(n) may at any stage be reproduced by the relation

px(m) =@ ((x™ = E,(x))/(Va(x))'"?) = @ ((x ™ —E, (x))/(V(x))'"?), (17)

As a consequence of this finding, we now redefine the state spaces of the
hierarchic Markov process so that the state space of the main process holds

(15)
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only one element, and the state space of the only possible subprocess becomes
Q= {Uy, ..., b} X Q;, where the set {u,, ..., i, } represents alternative values
of the expectation of X. In the following u(i) will denote the expected value
belonging to state i € Q,.

Put E,(x) = u(i) and E, . ;(x) = u(j) for any i, je Q,. If E,(x) and E, , ; (x)
satisfy equation (14), the transition probabilities of the subprocess are calcu-
lated as

pii(n) =Y. pi(mp.(n) (18)
and otherwise

pi;(n)=0. (19)

The expected production and reward given stage, state and action are
calculated as

mi(n) =) mi(n)p.(n), (20)
and
ri(n) =Y ri(mpx(n). (21)

We have now arrived at an ordinary hierarchic Markov process that may
be solved by usual methods as described by Kristensen (1988, 1991). Thus
we are able to solve the asset chain situation as well as the quota situation.

5. Benefits from updating: a numerical example

In order to illustrate the benefits of updating, we shall consider a numerical
example. Suppose that the expected production of an animal decreases
linearly with age from an initial level at stage 0 according to the following
relation:

mn)=c, — c,n. (22)

The observed total production of an animal during stage » is calculated as
Y, in equation (1), and we define the physical output as mé;(n)=Y, for
d {1, 2}, since a replacement is assumed to take place (and to be decided)
at the end of a stage. In the replacement state, the physical output is zero.
The reward gained at stage n is defined as

réi(n) = camii(n) — cq4(n) + c§(n), (23)

where c; is the unit price of the product, ¢,(0) is the price of a new animal
for replacement and c,(n) =0 for n> 0, ci(n)=0 for all n, and c3(n) is the
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value of an animal being replaced at stage n. In the replacement state,
however, the reward is zero. We shall assume the value of an animal to
decrease linearly over stages from an initial carcass value ¢, at stage 0
according to the relation

c2(n)=cq — cqn. (24)

A set of numerical values were chosen for 6., 0,, a, N and the c-constants
of equations (22) to (24). The selected values are summarised in Table 1. For
X, the nine levels ]—oo; —3.5], 1—3.5; —2.5],...,13.5; oo[ were distin-
guished. The levels are referred to as 1, ..., 9, respectively. For the sums I, =
X +e,, the 13 levels ]—oo0; —5.57, 1—5.5; —4.5],...,15.5; oo[, referred to as
1,..., 13, were considered. For the current expected value of X, the same
levels are used as for X. Thus the total number of states in the subprocess
becomes 9 x 13 + 1 =118 (the last state added is the replacement state).

In order to be able to evaluate the benefit of updating, two alternative
hierarchic models were formulated. In one model it was assumed that X
was directly observable. In that case the nine levels of X were defined as
states of the main process, and the 13 levels of I, plus the replacement state
were defined as 14 states in the subprocesses.

The second alternative represents a situation where X is not observable,
and no updating of the belief in X is performed. In other words, the prior
distribution of X is used during the whole lifetime of the animal. The same
hierarchic design was used as in the updating situation, but in equations
(18), (20) and (21) the initial state distribution p,(0), ..., po(0) of x was used
at all stages instead of p;(n), ..., po(n). In all three models, optimal policies
under the discounting criterion referring to the asset chain situation were
calculated using the optimisation cycle of Kristensen (1988), and the eco-
nomic results were measured by the present value of the entire infinite
process calculated just before purchase of a new animal. The results are
compared in Table 2.

Table 1. Selected values for the parameters of the numerical example in section 5

Parameter description Symbol Value
Standard deviation of basic state X Oy 2
Standard deviation of temporary effect e, g, 2
Autoregression coefficient a 0.5
Maximum age (stages) of an animal N 10
Expected production of an animal at stage 0 ¢4 20
Expected reduction per stage in production ¢,y 0.5
Unit price of product Cs 10
Price of new animal for replacement c4(0) 200
Carcass value of an animal at stage 0 Ceo 120
Reduction per stage in carcass value ¢y 4
Discount factor per stage 0.95
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Table 2. Present values under optimal policies in three alternative situations, representing
different levels of knowledge on the basic state X

Level of knowledge Present value Relatively
Only prior knowledge available 3120 100
Updating of knowledge as observations are done 3435 110
Complete knowledge of the value of X 3449 111

As it appears, the updating of knowledge increases the economic result
by 10% compared to a situation with no updating. Furthermore, the result
under updating is very close to the result under complete knowledge. The
autoregression coefficient a is a measure of the constancy of the random
effect e,. In the extreme case a =0, the variation of e, is just noise in the
observation of X, whereas in the opposite situation with a=1, e, will be
constant over time, making X and e, measure exactly the same, namely a
permanent characteristic of the animal. In order to study the effect of a on
the benefit of updating the value was varied from 0.1 in steps of 0.1 to a
value very close to 1.

It appears from the results that there is practically no benefit of updating
when a is close to 1, whereas the benefit is considerable for small values of
a. The reason is that for values of a close to 1, X and e, express almost the
same, and in that case only the directly observable sum is of interest. Further,
it appears from equation (16) that the precision of the belief concerning X
increases only very little over stages when a is close to 1, since the increase
per stage is proportional to the factor (1 —a)?/(1 — a?) which decreases for
a increasing towards 1. Therefore, the benefit from updating is very small
for such high values of a.

In the consideration of the influence of a on the benefit of updating, two
arguments lead in the same direction: (1) the precision increases only a little
for values of a close to one, and (2) the economic significance of distinguishing
X and e, vanishes as a converges towards 1. We shall now consider the
influence of combined values of the standard deviations o, and g,.
Concerning this question we are less fortunate than when we considered the
influence of a. On the one hand, we know from equation (16) that the
increase in precision concerning the belief in X is small when o, is big. On
the other hand, if o, is small compared to o, the directly observed sum
I, = X + e, expresses almost the same as X. Therefore, we must expect the
benefit of updating to be relatively small, since we are told something that
we (almost) knew in advance. Thus, we have conflicting views, and only the
results may show us the true influence of g,.

It was found that for a fixed value of o, the benefit increases with a,. We
may therefore conclude that even though the information acquired is rather
vague for high values of a,, it is at least new and therefore more valuable
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than for low values of o,. It also appeared that the benefit from updating
increases even more with o,. This is not surprising, since a great variation
in a variable automatically increases the economic value of information
concerning the true level of the variable.

6. Discussion

The numerical example in section 5 has shown that the benefit of updating
may be considerable. In order to evaluate the method more carefully, we
shall now compare it to the methods typically used for modelling trait
variations in replacement studies in the literature. In most cases the state
variables have been defined from the directly observable variables I, ..., Iy,
but the variables have typically not been regarded as sums of underlying
unobservable effects. Examples in dairy cattle are Giaever (1966), Smith
(1971), McArthur (1973), Kristensen and Ostergaard (1982), van Arendonk
(1985a, 1985b) and Kristensen (1986, 1987). An example in sows is the work
of Huirne et al. (1988).

All authors mentioned have been aware that part of the observed value
of I, is due to a permanent property of the animal, even though it has not
been formulated directly as is done in equations (1) and (2). Without such a
model, the ideal way to take the permanent effect into account is to use all
previous observations I, ..., I, in the prediction of I,, . Thus all observed
values should be kept as state variables in the model. Therefore, the size of
the state space becomes prohibitive if an appropriate number of levels is
defined for each of them.

The most common way of dealing with this problem in the literature is
to assume that the last two or three observations (I,_,) I, _,, I, are sufficient
in the prediction of I, ;. Thus we only have to keep two or three state
variables instead of all n observations. This method was used in dairy cows
by Smith (1971), van Arendonk (1985b) and Kristensen (1986, 1987), all
keeping two observations of I,. In sows, Huirne et al. (1988) used the same
approach keeping three observations of litter size.

In the approach taken in this paper, I, is assumed to be the sum of two
(or more) underlying unobservable effects as defined in equation (1). Under
these conditions, it is easily shown that the expected value and variance of
I, given I, ..., I, are calculated as

E(In+1 llla (RS In) =(1 - a)E(XIIIa cees In) + aIn (25)
and
VUi s o L) =(1 = aPV(X | Iy, ooy 1) + (1 - a?)o?. (26)

From equations (25) and (26) we are able to conclude that by keeping only
the current expectation of X and the most recent observation I,,, the predic-
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tion of I,,; is exactly the same as if all previous values I, ..., I, were kept
and used in the prediction! As shown in equation (16), the conditional
variance of X is independent of the observations made and known in
advance.

We are able to conclude that if the model represented by equations (1)
and (2) is true, we only need two state variables in the model to obtain the
same precision as if all previous observations of the trait in question were
kept as state variables. Since the dimension of the model is the more limiting
restriction in practical applications of Markov decision processes, this is an
important contribution to the problem of reducing the state space without
loss of precision. The generalisation of this conclusion to the multi-trait
model sketched in section 2, equations (3) and (4), is that the number of
necessary state variables equals the sum of directly observed traits and the
number of unobservable permanent effects.

It must be emphasised that the multi-trait formulation in equations (3)
and (4) is not necessary in all cases where several.random traits are observed.
If, an addition to Y,, another trait Z, is observed, and this trait only affects
Y, through the function m(-) so that I, and Z, are independent there is no
problem in treating such a case within the single-trait model. The transition
probabilities concerning I, described in this paper simply have to be
multiplied by those of Z,,.

The definition of a directly observable trait as a sum of underlying unob-
servable effects provides a framework for prediction of the future revenues
in an optimal way given the information available at the time of decision.
Thus the conclusion of the present study is that the developed knowledge
updating technique seems to be an appropriate solution to the uniformity
problem of defining and measuring the traits of an animal considered for
replacement in the asset chain situation as well as in the quota situation.
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ABSTRACT

The dairy herd is described as a multi-component system, where the
components are the cows and heifers. The problem of finding an optimal
replacement policy to the multi-component system is considered. The
complication of the multi-component model is that, if the supply of heifers is
limited ( i.e. the dairy farmer uses only home-grown heifers ), the replacement
decision concerning a cow does not only depend on the state of that particular
cow but also on the states of the other cows and heifers in the herd. Initially, it
is demonstrated that the multi-component replacement problem may be
formulated as an ordinary Markov decision process. Unfortunately, the model
is far too large to be solved by any known methods. Therefore, an approximate
method combining dynamic programming and stochastic simulation in the
determination of a set of descriptive parameters is suggested. The parameters
are used in the calculation of the multi-component replacement criterion for
cows as well as for heifers. The method has been tested by extensive
simulations under 100 different conditions concerning prices and average milk
vield of the herd. It was concluded that, when the replacement costs ( the price
of a heifer minus the price of a calf and the carcass value of a cow) are small,
the method improves the economic results considerably compared to the usual
models, assuming an unlimited supply of heifers. The information concerning
heifers, which is provided by the method, makes it relevant even in cases where
the replacement costs are large. The basic idea of the study may be relevant in
a more general range of problems involving replacement under some
constraint,

*This research was carried out as part of Dina, Danish Informatics Network in the
Agricultural Sciences.
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1 INTRODUCTION

The aim of this study was to develop a method for finding an approximate
solution for the optimal replacement policy in the dairy herd regarded as a
multi-component system. In the literature, several studies deal with optimal
dairy cow replacement regarded as a single-component system (i.e. only one
cow is considered at a time, assuming an unlimited supply of heifers for
replacement). A review of such studies is given by Arendonk (1984), and
more recent examples are Arendonk and Dijkhuizen (1985), Arendonk
(1986) and Kristensen (1987, 1989). The latter models are very detailed and,
from a theoretical point of view, the single-component replacement problem
in dairy herds may be regarded as having been solved to a satisfactory
degree.

Most replacement studies in the literature deal with a single-component
system (i.e. only one producing unit (component) is considered, assuming an
unlimited supply of replacement units). In a multi-component system,
however, several producing units (components) are considered simulta-
neously. If only the number of components in operation is limited, but the
supply of replacements is unlimited, the problem is identical to that of the
single-component model, because the decision to replace a component does
not influence the possibility of replacing any of the other components. On
the other hand, if the supply of replacements is limited, the replacement of
one component will decrease the possibility of replacing others, because the
number of replacements may not suffice. Therefore, the replacement
decision concerning one component does not only depend on the state of
that particular component but also on those of the other components of the
system. Instead of a relatively simple comparison of two components (the
one in operation and the replacement) the problem is now faced of choosing
the optimal composition of components from the available population of
the components in operation and the available replacements.

It is assumed that the interaction is due to technical and economic
dependency so that each component is assumed stochastically independent
of the others. If the dairy herd is regarded as a multi-component system, the
system is the entire herd, whereas the components in operation are the
individual cows and the replacements are the available heifers.

A special feature of the dairy herd replacement problem, compared to a
general formulation of the multi-component replacement problem, is that
the supply of replacements is not exogenous to the process but is actually
generated by the process itself. Since many dairy farmers only use home-
grown heifers as replacements (mainly because of the risk of introducing
infectious diseases in the herd when heifers are bought at the market), the
supply of heifers will be limited to those born in the herd. This further raises
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the problem of deciding how many female calves to raise as potential
replacements, which is also briefly discussed in this paper.

Most single-component studies in the literature dealing with dairy cows
use dynamic programming and Markov decision processes in the
determination of optimal replacement policies. Some of the models are very
large. Thus, Arendonk and Dijkhuizen (1985) used a model with 174 000
states, reported by Arendonk (1988), and the model of Kristensen (1989)
contained 180000 states. Also, the multi-component problem can be
formulated as a Markov decision process, but, since the states of all
components should be considered simultaneously, the size of the total model
will be far beyond computational capacity. Therefore, the need for
approximate methods arises.

Ben-Ari and Gal (1986) discussed this problem and introduced a method
called ‘Parameter Iteration’. The idea is to approximate the total expected
profit of the herd at a given composition by a function involving a set of
parameters describing the relations between the total expected profit and the
present herd composition. The parameters are determined in each situation
by an iterative method.

Also, the method described in this paper is based on a parameter iteration
technique, but the implementation of the idea is fundamentally different
from that of Ben-Ari and Gal (1986). The main reasons for dealing with the
problem again are as follows:

(1) The approximation used by Ben-Ari and Gal (1986) is exact when the
supply of heifers is unlimited (i.e. the opposite situation of the one
studied).

(2) The evaluation of the method seems insufficient in Ben-Ari and Gal
(1986). No results have been presented showing the benefits of the
method over the results from the underlying single-component
model.

(3) 'The single-component model of Ben-Ari and Gal (1986) was very
simple, containing only 180 states.

In the present study, the problem is discussed under the assumption that no
milk quota is present. An additional paper discussing the multi-component
replacement problem under a milk quota will be considered later.

2 THE DAIRY HERD AS A MULTI-COMPONENT SYSTEM

In this section, the multi-component replacement problem in dairy herds is
described and it is shown that, in principle, it may be formulated as an
ordinary Markov decision process with known parameters.

A dairy herd with a limited maximum number of cows (L) was considered.
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Each cow and its successors are represented by a Markov decision process
with known action and state spaces and known parameters (the single-
component model). The reward of state i under the action a (a = ‘keep’ or
‘replace’) is denoted as r# and the transition probability from state 7 at the
present stage to state j at the following stage under action a is denoted as pj;.
The state i of a cow reflects the important characteristics of the cow (i.e. milk
yield, age, reproductive status, etc.). Also, a state representing the absence of
a cow (an empty stall) must be included.

The Markov decision process may be an ordinary process, as described by
Howard (1960), or a Hierarchic Markov process, as described by Kristensen
(1988). In both cases, there are iterative methods to determine an optimal
policy under infinite horizon (i.e. an infinite number of stages) assuming an
unlimited supply of heifers. Under the optimal policy the present value (f)
can be calculated, the total expected discounted rewards of the process
starting in state / and running over an infinite number of stages following an
optimal policy.

The single-component model of this study is identical to the model of
Kristensen (1989). The state variables of that model are the genetic merit (5
classes), the lactation number (6 classes), the stage of lactation (18 classes),
the milk yield of previous and present lactation (15 classes each), and the
pregnancy status (8 classes). The model is of the hierarchic type with a total
of 180000 states.

A Markov decision process describing the entire multi-component system
will now be defined. It will be referred to as the multi-component model. A
state is defined from the values of L + H state variables describing cows and
heifers in the herd. The L cow variables are defined by the states (in the
single-component model) of the L cows (and empty stalls) of the herd.

Heifers are described by H state variables defined by age or pregnancy.
The values of the heifer state variables are the numbers of heifers in each of
the H states. State 1 represents heifers born at the previous stage, and state H
represents down calving heifers.

Heifers in state 1,...n are young animals before heat detection is initiated,
and the state number is equal to the age measured in stages. Heifers
instate n+1,..., H— 11 are those being submitted for service. Also in this
group the state number is equal to the age in stages. Conception is assumed
to be independent over stages and animals. Thus, the transition probability
p. from any of the insemination states (n+1,..., H—11) to state H—10 is
assumed to be fixed. The states H — 10,..., H represent heifers in calf, and a
heifer in state H—v (0 <v < 10) is expected to calve v stages ahead.

As it appears, a cow state variable gives the state of one particular cow
whereas a heifer state variable gives the number of heifers occupying one
particular state. In the work of Ben-Ari and Gal (1986) the cow state
variables were defined in the same way as the heifer variables in this study.
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That was possible because the single-component model of their study was
very small containing only 180 states. Thus, the number of cow state
variables was also 180. In the present study the single-component model has
got 180000 states and followingly the number of variables would be the
same if the formulation of Ben-Ari and Gal (1986) was used. In the present
study, the number of state variables concerning cows is only L (i.e. the
maximum number of cows).

An action in the multi-component model is a set of actions A = (a,, ..., a;)
defining the action for each individual cow. The admissible actions are
restricted to those where the number of heifers used for replacement does
not exceed the number available.

The reward R{ of state 7 under action A4 is given as

L

R;‘=Zr;‘“ M)

n=1

where i, is the (single-component) state of the nth component. In the model,
the raising costs of heifers is not included. Instead, calves will be sold to
heifers and replacements bought from heifers at market prices.

The transition probability is now considered from state 7 to state J, A state
is defined by the cow state variables c,,...,c, and the heifer variables
hi,...,hy. Transitions among the heifer states are independent of those
among the cow states, so they are treated separately. The cow states are first
considered, where the transition probability is just the product of all single-
component transition probabilities involved:

Ply=pij, X ply, % - x pi, (2)

The transition probabilities among the heifer states are determined solely by

the combined heat detection and conception rate p.. Thus, it can be seen that
the overall transition probabilities exist and might be calculated.

All parameters of the multi-component model have now been defined and

it is seen that it is just a usual Markov decision process with known

parameters. Only computational capacity prevents the finding of an optimal
replacement policy by the usual techniques.

3 THE IMPLEMENTATION OF THE PARAMETER ITERATION
METHOD

3.1 Theoretical considerations

In this section an approximative method to circumvent the capacity
problems involved in the application of usual techniques is described. 111
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If the actions of individual cows were independent of each others (i.e. at an
unlimited supply of heifers) the total present value of the multi-component
model F; under an optimal policy would equal the sum of all individual
present values f,, i.e.

Fr=fi+ 4/, 3)

Since they are in fact not independent F; is approximated by a function G
involving a number of parameters g,,..., g, relatingf; ,....f; and Ito F;. The
question is now what kind of function should be preferred? Since the relation
is linear in the independent case, Ben-Ari and Gal (1986) argued that it
would be natural also in the dependent case to approximate by a linear
function. However, since the linearity is caused by the independence
assumption this does not seem to be a good choice. Instead, some logical
characteristics that the function should possess will be argued for.

(1) The total present value under a limited supply of heifers can never
exceed the value under unlimited supply as expressed in eqn (3). Thus,
F, can be expressed as

Fr=fi+-+/f,—GU) (4)
where G is a non-negative function.

(2) The only way that F; may be reduced compared to eqn (3) is by
shortage of heifers. Thus, the reduction expressed by G in eqn (4)
must be directly linked to the number of heifers in various states.

(3) The reduction caused by shortage of heifers at a certain age (i.e.in a
specific state) is decreasing with increasing number of heifers at that
age. The reduction caused by a shortage at that age will vanish if the
number available is sufficiently large. If no heifers are available at a
certain age, the reduction from that age will decrease considerably if
one is added. If a second one is added, the reduction will increase
further, but not as much as for the first heifer.

(4) The size of the reduction caused by a shortage of heifers depends on
the composition of the cow herd. If many cows would be replaced in
the case of unlimited supply, the reduction will be larger than if only
few cows should be replaced. Thus, G must include some measure of
total herd quality. Further, this relation is more prevalent in the case
of a shortage of heifers near calving than in the case of a shortage of
younger heifers, because the coherence between present and future
quality is decreasing with increasing time interval. Thus, the
reduction caused by a shortage of new-born heifers will be almost
independent of the present cow herd quality, whereas the reduction
caused by down calving heifers will be almost entirely linked to the
cow herd quality.
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(5) Assume that n, heifers of age a, and n, heifers of age a, (where
a, < a,) are available. The reduction caused by a shortage of heifers
at any of the ages depends on the number of heifers as described in
point (3), but if n, =n,, and if the herd quality is assumed to be
constant over time, the reduction caused by a shortage of heifers at
age a, only differs from the corresponding reduction caused by a
shortage of heifers at age a, due to the discount factor. Except for the
discounting (the age a, is closer to first calving than a,) the reductions
are equal.

3.2 Choice of functions and parameters

One way to express the herd quality Q, is to define it from the future
profitabilities of the individual cows as defined by Kristensen (1987). It is the
benefit (positive or negative) from keeping a cow for at least one additional
stage compared to immediate replacement. In other words, a positive future
profitability means that the optimal action in the single-component model is
to keep, and a negative value means that the optimal action is to replace. The
following formula is for (single-component) state i:

gt =ri' + ﬁzp?j‘f} — = ﬁZp?ff,- (5)
J j

where the superscripts a, and a, refer to the actions keep and replace,
respectively. The present value f; of a cow in state j is known from the
optimal solution to the single-component problem. It represents the total
expected discounted rewards of a Markov decision process starting in state j
and running over an infinite number of stages under an optimal policy. The
interpretation of eqn (5) is that from the next stage an optimal policy will be
followed, but at the present stage any of the actions may be chosen. The
future profitability is then calculated as the difference in present value when
the cow is kept for at least one stage compared to the present value of
immediate replacement. The symbol 8 is the discount factor from a stage to
the previous one.

A weakness of this definition of quality is that the estimated loss, if the
future profitability is negative, is related only to a very short period (one
stage). At the next stage it is assumed that a heifer is available, and if the
future profitability is still negative, a replacement is assumed to take place.
Thus, the future profitability of even the least efficient cow is numerically
small (though negative). In other words, a negative future profitability does
not indicate whether the cow is just in a temporary crisis or whether it is
really not profitable in the long run either.

113



114

Anders Ringgaard Kristensen

Instead of eqn (5), an alternative definition of quality shall be considered
4=y —ri* — ﬂzp?ffj (6)
j

where ¢, is the present value (in the single-component model) of a cow which
at stage ¢ is in state / provided that it is kept at least until next calving. This
present value is calculated recurrently according to

d)it: i

if a calving takes place in state i, and
Gy =1ri'+ ﬂZp?jld’j.H 1
j

if no calving takes place. The summation at the right-hand side of the
equation is over all possible states at stage ¢ + 1. The superscript a, is the
action ‘keep’ and a, is ‘replace’. Thus, ¢; is the advantage (positive or
negative) of keeping the cow at least until the next calving. In the calculation
of ¢,, the absolute value of ¢ is of no relevance. The calculation is just started
in the states where a calving takes place, and the value for states representing
other stages of lactation are then calculated backwards step by step
beginning one stage before calving and ending one stage after the previous
calving. The advantage of eqn (6) over eqn (5) is that the defined quality
refers to a longer period (instead of just one stage). It therefore represents a
more permanent characteristic of the animal avoiding a temporary crisis to
result in a low-quality classification.
The herd quality in turn is defined as

L
O,= Z q;, (7)

n=1

In order to get an impression of the shape of the function G, the immediate
loss from shortage of down calving heifers (i.e. heifers of state H) will be
considered. From the single-component model we know the future
profitability (eqn (5)) of each individual cow in the herd at any time. If no
heifers at all are available, the immediate loss will numerically equal the sum
of all future profitabilities below zero (i.e. of all cows that would be replaced
if the supply of heifers was unlimited). If one and only one heifer is available,
the lowest ranking cow will be replaced if its future profitability is negative.
The immediate loss thus numerically equals the sum of the remaining future
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profitabilities below zero. Correspondingly, the immediate loss if 2, 3, 4 or
more heifers are available may be calculated in a similar way. If the number
of heifers available exceeds the number of cows having negative future
profitabilities the loss will be zero.

By simulation, it is possible to generate a large number of herd
combinations and thus a large number of joint observations of total herd
qualities and immedrate losses if 0, 1, 2, 3,... heifers of state H are available.
By analysis of such a simulated material it was found that a good fit was
obtained by the function

golhy, Qr) = aexp (bhy + cQ)) (8)

where go(hy, Q;) is the expected immediate loss if the number of heifers just
about to calve is Ay, and the total herd quality is Q. The symbols a, b and ¢
are parameters to be estimated. It is expected that a will be positive, and b
and ¢ will be negative. It appears that eqn (8) becomes linear in /1, and Q, by
using logarithms. Therefore, the values of a, b and ¢ may be determined by
ordinary least-squares regression.

From these results the expected loss from shortage of heifers in state H — 1
(i.e. heifers expected to calve one stage ahead) are now considered. From eqn
(8) the expected discounted loss is

gl(hH—laQl)zﬂE(gO(hH—laQJ)'[) 9)

where the stochastic variable Q, is the herd quality at the following stage
given a present herd quality of Q,. The number of heifers in state H at the
following stage equals the number in state H — 1 at the present stage. If eqn
(8) 1s substituted into eqn (9), then

gilhy -1, Q1) = BE(aexp (bhy - + cQ))| 1) (10)

In a similar way, the expected discounted loss from shortage of heifers in any
other state of pregnancy H — 10,..., H—2 may be calculated. The central
elements are a discount factor corresponding to the time gap until the heifers
of a state are expected to calve and the expected loss at that time given the
present herd quality.

The expected loss from heifers not yet pregnant is more complicated to
calculate, because the expected number of these heifers to calve v stages
ahead is not equal to the number of heifers in a specific state. Young heifers
of the same age will typically not conceive at the same time, and heifers of
different ages may conceive at the same time. Recalling that states 1,...,n
represent young heifers before heat detection is initiated, and states
n+1,..., H—11 represent heifers under insemination, it can be concluded
that the total number, H,,, of heifers from the insemination states to
calve 11 stages ahead is binomially distributed with the parameters
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N=h,, +-+hyg_; and p=p.. Accordingly, the expected value and
variance of the total number of heifers to calve 11 stages ahead are

H-11
E(Hy | 1)=p, z h;
e (1)
H-11
ViuHy | D)=p(1—p,) Z h;

i=n+1

If the total number of heifers to calve 12 stages ahead, H,,, is looked at it is
found that the number of heifers from state » is binomially distributed with
the parameters 4, and p.. The number of heifers to calve 12 stages ahead
from the present insemination states is also binomially distributed with the
parameters A, ,, + -+ hy_, (heifers from state H— 11 are not included
because if they do not conceive at the present stage—calving 11 stages
ahead—they are culled) and (1 — p,)p. (i.e. the probability that they conceive
at the next stage provided that they do not conceive at the present stage).
Thus, the expected value and variance of the total number of heifers to calve
12 stages ahead are

H-12
EIZ(H12|1) = hnpc + (1 _pc)pc Z hi
i=n+1 (12)
H—-12
VlZ(HIZ I I) = hnpc(l _pc) + (1 _pc)pc(l - (1 _pc)pc) 2 hl’
i=n+1

Continuing in the same way it is found that the total number of heifers to
calve v stages ahead (v> 10) is a sum of binomially distributed random
variables having the expected value and variance as follows:

n' H-v
E(H,|I)= Z pl=p) T P4 p (1= p) ! Z h;
i=n—v+12 i=n+1

(13)

n'

VAH,|I)= Z Pl =p) "I = p1 — p )T D)y

i=n—p+12
H-v

+p(1—p) (1 —p1—p)~) z h;

i=n+1
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where #n' = min {n, H — v}. The limits of the first sum in the equation are from
the youngest possible heifers to calve v stages ahead to either the oldest
heifers presently not being observed for heat or the oldest possible heifers to
calve v stages ahead (whichever is lowest). The limits of the second sum are
from the youngest heifers presently being observed for heat to the oldest
heifers in the insemination states that are not being discarded if they do not
become pregnant to calve v stages ahead (or before). If for a value of v, the
lower limit of a sum is higher than the upper limit, the sum will vanish.

The total reduction G(I) in present value caused by shortage of heifers is
calculated as the sum of expected losses from shortage of heifers expected to
calve different stages ahead, i.e.

N’

G = Z B°Efaexp (bH, + cQ,)|]) (14)

v=0

where the random variables H, and Q, are the total number of heifers
calving and the herd quality, respectively, v stages ahead given the present
(multi-component) state . The correct value of N is infinity, but for practical
purposes it 1s reasonable to let N’ be the maximum age (in stages) that a new-
born heifer may possibly calve under the defined insemination and culling
policy.

In order to calculate G(I), how to evaluate the expected value at the right-
hand side of eqn (14) must be considered. In other words, the distribution of
the time series of observed herd qualities at successive stages must be known.
It is obvious that if the herd quality is low at the present stage, it must be
expected to be low at the following stage too. Further, a large number of
heifers to calve at the present stage is assumed to imply a higher herd quality
at the next stage, because of the possibilities of replacement. A simple way to
model this property is to define the time series as follows, where Q, is the herd
quality at stage :

Quey=m+fhy+e.,
and (15)

erry=de + &,

where m is the average value under the (multi-component) policy followed if
no heifers were available, / is a parameter describing the marginal
improvement caused by an additional heifer, 4 is an autoregression
coefficient and the residuals ¢, are assumed to be mutually independent and
normally distributed with zero mean and a standard deviation of ¢. The
values of m, f, d and ¢ will depend on the (multi-component) policy. Thus, at
an intensive culling, m is assumed to be higher (i.e. better herd quality). The
value of d is assumed to be lower because many replacements will decrease
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the correlation over stages. Finally, an intensive culling is expected to
decrease the random variation o.

The expected value and the variance of the herd quality v stages ahead,
given the present state /, are calculated as follows:

E Q1) =m+ fE(H,|1I)+ d"(Q; —m — fhy)
1_d2v
1—d?

where the conditional expectation and variance at the right hand sides are
known from eqn (13).

Given the model in eqn (11), an approximate value of the right-hand side of
eqn (9) can be calculated. For a given (multi-component) state 7, the ex-
pression bH, + cQ, is normally distributed with an expected value of bhy _ | +
c(m+fhy_, +d(Q;,—m—fhy)) and a variance of ¢?g2. Consequently, the
distribution of exp (bhy_, + ¢Q;) is log-normal with an expected value of
exp (bhy_ +c(m+fhy | + d(Q; —m—fhy))+ c*6?*/2). For all values of
v<11 the expression bH,+ cQ, is normally distributed under the
assumptions used) and therefore the distribution of the exponential value is
log-normal) with the expectation and variance given as

Ev(bHv + CQ.I | I) = bhH—v + C(m +th—u + dv(Ql —m _th))

] —d? (17)
1—d?

For values of v>11 the situation is more complicated since H, in this
situation is a random variable, which is a sum of several binomially
distributed random variables. Therefore, the expression bH,+ ¢Q, is not
normally distributed. Since, however, the normal distribution is usually a
good approximation of a binomial distribution, and further H, is a sum of

several random variables, the expression is assumed to be approximately
normally distributed. The mean and variance may be calculated as

E(bH, + cQ, 1) =bE(H,| 1)+ cE(Q,|1)
VibH, + cQ, | 1) = b*V(H, | 1)+ *V(Q, | 1) +2bcfV,(H, | )

where the conditional means and variances of the right-hand side are known
from eqns (13) and (16). Accordingly

Efexp(bH, + cQ,; | )= exp(E(bH, + cQ, | 1) + 3V (bH, + ¢Q; | 1))

If this equation is used in eqn (14) the following is obtained:

(16)
VAQs1 D =2V (H,|])+ o

VAbH, + cQ,;|I) = c*c?

(18)

N’
G)=a Z Brexp (E(bH, + cQ; 1) + 3V (bH, + cQ,;1D)  (19)
v=0
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The (multi-component) future profitability of a cow is
m=q¥ + GU")— G(I?) (20)

where I'' and /2 are the multi-component states if the cow is kept or replaced,
respectively, and g is the future profitability defined in eqn (5) for the single-
component model. An approximately optimal policy of the multi-
component model is given by the optimal policy of the single-component
model combined with the parameters of the function G. A cow is replaced if
the future profitability of eqn (14) is negative and kept otherwise. Each time
the lowest ranking cow has been replaced, the future profitabilities of the
remaining cows must be recalculated under the new herd quality and the
reduced number of heifers caused by the replacement.

3.3 An approximate solution

Having chosen the functions and parameters, the steps involved in the
determination of an approximately optimal policy of the multi-component
model may be described:

(1) Calculate an optimal policy of the single-component model by usual
methods.

(2) Estimate the parameters a, b and c of eqn (7) from a simulated data set
using an arbitrary policy. The parameters m, d, fand o of eqn (11) are
also estimated.

(3) Simulate a time period using the present parameters m, d, fand ¢ to
define the policy to be followed. Calculate the economic result of the
simulated period and estimate new values of m, d, fand ¢ from the
simulated data set.

(4) Repeat step (3) until the results have stabilised.

3.4 Culling of heifers

In the previous sections, the problem of optimal replacement of cows, when
a given number of heifers in different states are available, has been
considered. The opposite problem of whether a heifer in a specific state
should be sold or raised for future milk production in the herd is now
considered. In that connection, the production value v(i, I') of a heifer in state i
given the multi-component state / is defined as

(i, )= G(I,)— G(I) (21)

where /I, is the multi-component state if one heifer in state i is sold. The value
of G(I) is calculated from eqn (19). The production value expresses the
expected future contribution of the heifer to net returns from the production
of cows. This value is calculated from the point of view of the milk producer.
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Further on, the alternative value is defined as the present market value of
the heifer plus the expected discounted costs of raising the heifer from
present age to first calving minus the discounted price of a down calving
heifer. The alternative value expresses the gain (positive or negative) from
selling the heifer immediately compared to keeping it until just before
calving and then sell it or include it in the cow herd (which ever is best at that
time). The alternative value is calculated from the point of view of the heifer
producer.

However, the whole idea of the multi-component model is that the heifer
producer and the milk producer is one and the same. On considering the sale
of a heifer, the production value should be compared to the alternative
value. If the alternative value is higher it is profitable to sell the heifer;
otherwise, it should be kept for future replacement.

4 TEST OF THE METHOD
4.1 Material and methods

In order to test the method described in the previous section a single-
component dairy cow replacement model and a stochastic simulation model
of a dairy herd is needed. As mentioned in section 2, the replacement model
used is the one described by Kristensen (1989). The simulation model is the
one used by Kristensen and Thysen (1991). It includes, for each cow, the
same traits as the replacement model. Further, it includes the heifers of the
herd. The main characteristics of the simulation model are shown in Table 1.

A standard set of prices and herd level of milk yield was defined as in Table
2. In order to test the method under various conditions, 100 sets of
alternatives have been generated by a random number generator. In each set
of conditions the individual prices and level of milk yield were drawn
independently from uniform distributions over intervals defined from the
original values of Table 2+ 15%.

Under each of the 100 sets of conditions the method of section 3.3 was
applied. In the simulation of step (2), the cows were ranked according to their
single-component future profitability as defined in eqn (5). Thus, a cow is
replaced if the future profitability is negative and a heifer is available. In the
simulation of step (3), the cows were ranked according to their multi-
component future profitability as defined in eqn (20). (The ranking was
recalculated each time a replacement was performed). In all cases a herd of
100 cows (as a maximum) is simulated over a period of 100 years in order to
decrease the random variation on results.

Step (1) of the method gives the economic result if an optimal policy is
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TABLE 1

Main Characteristics of the Simulation Model”

Cows
Number of 4-week stages per lactation 11-18
Maximum number of lactations per cow 6
Forced replacement if not pregnant before 238 days
Stochastic state variables
Breeding value (milk yield) of father 5 classes
Milk yield, previous lactation 15 classes
Milk yield, present lactation 15 classes
Length of calving interval 8 classes
Deterministic state variables
Lactation stage 18 classes
Lactation number 6 classes
Total number of states (approximately) 180000
Probability of a calving to result in a surviving heifer 0-45
Heifers
State variable
Age or reproductive status 41 classes
Minimum age of first breeding 56 weeks
Probability ot conception per stage 0-33
Age of disposal of open heifers 116 weeks
“From Kristensen and Thysen (1991).
TABLE 2
Standard Prices and Herd Level of Milk Yield
Prices (Dkr)
Milk (kg FCM?) 2-40
Basic feed (SFU?) 1-30
Feed for milk production (SFU) 1-45
Calf 1400-00
Heifer 9000-00
Young cow (kg live weight) 11-50
Older cow (kg live weight) 11-00
Interest rate (corrected for tax and inflation, %) 3-00
Herd level of milk yield (week 1-40, 1st lactation) 5800-00

“Fat corrected milk.
?Scandinavian feed unit.
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followed and an unlimited supply of heifers is available. This result thus
gives an upper bound of the economic result using the new method. A lower
bound is given by the economic result of the simulation of step (2), where the
single-component future profitability is used as replacement criterion under
limited supply of heifers. The new method should do better than that in
order to be relevant.

The standard conditions are used for calculating the production values of
heifers in herds of varying composition.

4.2 Results

In all 100 sets of conditions step (3) of the method was run three times in
order to see when the results stabilised. The economic results, however, did
not improve by running step (3) more than once. On the other hand, the
values of the parameters m, d, f and ¢ often (but not always) changed from
step (2) to step (3), but only slightly from first to second run of step (3). All
results in the following are taken from the second run of step (3). In Table 3
the parameter estimates under standard conditions are shown.

Denote as O; (i=1,...,100) the economic result in Danish kroner (Dkr)
per cow per year (revenues from milk, calves and culled cows minus the costs
of feeds and heifers) under an optimal policy for the ith set of conditions
assuming unlimited supply of heifers. These results are the expected values
calculated directly from the functional equations of the single-component
Markov decision process. The simulation results for the /th set of conditions
under limited supply of heifers are denoted as S; and M, using the single- and
multi-component future profitabilities, respectively. Unlike O;, S;and M; are

TABLE 3
Parameter Estimates of the Models in Eqns (8) and (15) under the Standard Conditions of
Table 2
Parameter Svymbol Step 2 Step 3

First run Second run
Level a 312 x 107
Effect of heifers b —0-544
Effect of herd quality c —0670x 10~ 4
R? of eqn (8) 0-71
Basic level n 143 x 103 1-45 x 107 1:50 x 107
Autoregression coefficient d 0-762 0-784 0791
Effect of heifers f 1675 1946 1824
Standard deviation a 1-17 x 10* 1-18 x 10* 1-14 x 10*
R? ol eqn (15) 0-64 0-68 0-68
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TABLE 4
Simulation Results (Dkr per Cow per Year Calculated as Revenues from Milk, Calves and
Culled Cows Minus Costs of Feeds and Heifers) using Single and Multi-Component Models
Compared to Results from Optimal Policies at Unrestricted Heifer Supply

Method Symbol® Percentile® Meun
/ 5 50 95 100
Optimal policy 0, 5128 6553 9402 13014 14 665 9540
Single-component model* S;— 0, — 1482 —867 —109 -29 7 -200
Multi-component model* M;—0; —1059 —589 —87 -9 24 —140
Benefit of multi-
component model M;—S; —59 —48 34 218 423 60

?Calculated for each variable independently of the others.
?Defined in the text.
¢ Deviation from unrestricted optimal policy.

not expected values, but only estimates of the true expectations. Therefore, a
certain (limited) variation around the true values is unavoidable. In Table 4
the percentiles, extremes and means over the 100 sets of conditions are
shownforO,..., 0,4, as well as for the differences S; — O, ..., S100 — O100
and M, —0,,....,M,,0— 0100. Finally, the same statistics are shown for the
dlﬁerences M, — Sl, s M 100 — S100 representing the benefits of the multi-
component model over the single-component model.

As it appears, the results from the multi-component model are on average
60 Dkr better per cow per year than when the single-component future
profitabilities are used as replacement criterion. The results using the single-
component criterion are on average 200 Dkr below the unrestricted optimal
solution and those using the multi-component criterion are on average 140
Dkr below the unrestricted optimal solution per cow per year.

As it appears from Table 4, the benefit of the multi-component
method over the single-component varies considerably over the 100 sets of
conditions. It should be expected that the benefit is highest in situations
where the supply of heifers is smaller than the optimal need for
replacements. The most important factor determining the level of
replacement is the price difference between a heifer and the carcass value of a
cow (Kristensen & Ustergaard, 1982). Almost equivalent to this difference is
the replacement costs defined as the price of a heifer minus the slaughter
value of a young cow and the value of a calf.

In Fig. 1, the benefit of the method is plotted against the replacement costs
under each of the 100 sets of conditions. As expected, the benefit is very high
in situations with low replacement costs, where the optimal level of
replacement is high, and the heifers available do not suffice. In situations
with low replacement costs the benefit seems almost to vanish. In some cases
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Fig. 1. Plot of the benefit (Dkr) of the multi-component model over the single-component
model against the replacement costs (Dkr—see the text for definition).

the benefit is even negative, but, since the values represent the results of
stochastic simulation, at least some negative values should be expected when
the true value is numerically small though non-negative. By repetitive
simulation runs under fixed conditions the standard deviation of a
simulation result was determined to be around 30 Dkr. Since the benefits in
Fig. 1 represent differences between two results the standard deviation in the
direction of the y-axis becomes 42 Dkr. The negative values are therefore
easily explained as results of random variation around a non-negative true
value.

In order to study the production values of heifers in relation to present
herd quality and heifer state (age or pregnancy status) a heifer stock was
designed in a manner that rather precisely results in the same expected
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number of heifers to calve at each future stage 40 stages ahead. Under the
standard conditions the herd quality was successively varied from the average
value minus 2 units of standard deviation in steps of 0-5 units to the average
value plus 2 units. For each heifer state the production value of the last heifer
was determined as the loss in expected discounted future net returns from
cows if exactly one heifer from the state was culled. The parameter estimates
of Table 3 (step (3), first run) were applied.

In Fig. 2 the production value is plotted against heifer state and herd
quality. As expected the production value depends heavily on the herd
quality for heifers which are soon going to calve. For young heifers the effect
vanishes.

In Fig. 3 the production value of the last heifer in a state is plotted against
the number of heifers in the state and the state number. The basis is the same
heifer composition as used in Fig. 2, but the number of heifers has been
varied from 1 to 9 one state at a time. The calculations have been performed
for 2 levels of present herd quality resulting in two different plots.

2500

2000

1500

1000

500 -

Fig. 2. The production value (P) of a heifer in Dkr as a function of present herd quality

(unit: standard deviation, 0 = mean value) and heifer state (age or pregnancy status). State 1

represents newly born heifers and state 40 represents heifers just about to calve. The basic
heifer stock is constructed so that the supply of heifers per stage is constant.
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In both cases the plot is divided into three sections, which are states 1-13
representing young heifers not yet observed for heat, states 14-28
representing heifers under insemination, and states 30-39 representing
heifers in calf. In the first two sections the effect of the number of heifers in a
state is much smaller than for pregnant heifers. The reason is that for these
young animals, the heifers of a particular state are not expected to calve at
the same time because of the random variation in heat detection and
conceiving. Thus, few heifers in one state is to a large extent compensated by
sufficient heifers in other states. A similar compensation is not possible for
heifers in calf and therefore shortage of heifers in a state is far more critical in
those cases.

The reason for the lower production value of heifers under insemination
compared to young heifers before insemination is that, for instance, five
heifers in an insemination state are relatively more than the same number in
one of the states from 1 to 13. The expected number of heifers in the youngest
states 1s the average number of heifers born at a particular stage (4-week
period). The expected number of heifers in an insemination stage is lower
because some of the heifers at the age in question have already conceived
and thus are transferred to a pregnancy state.

At high herd quality, the future quality is expected to be lower than it is at
present, and therefore the production value of young heifers in calf is higher
than for down calving heifers. At low quality the situation is opposite as it
appears from Fig. 3.

5 DISCUSSION

This study is a contribution to the practical solution of the multi-component
replacement problem in dairy cattle, where the limited supply of heifers as
mentioned by Ben-Ari ez al. (1983) complicates the problem compared, for
example, to replacement of industrial items. An approximate method is
suggested, since the calculation of an exact solution is prohibitive. Even the
approximate method is very time consuming on the computer. The main
reasons are the size of the single-component model used and the simulations
of steps (2) and (3). If a single-component model of that size is used, we must
conclude that at present the calculations are too comprehensive for direct
practical application on a dairy herd. On the other hand, the calculations were
performed on a (powerful) PC, which in a few years probably is a standard
equipment on a commercial dairy farm. When further multi-tasking
computer systems come into general use, the time spent on a single job is not
so important because the computer may be used simultaneously for other
purposes. Therefore, a method as the one described may very well be applied
ina future decision support system concerning replacement in dairy herds. In
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this connection it should be noticed, that as long as the price conditions are
the same, the optimal policy is represented solely by the optimal solution to
the unrestricted single-component problem combined with the parameter
estimates concerning a, b, ¢, m, d, f and ¢ of the function G(J) in eqn (20).
Therefore, a new optimal policy of the multi-component problem only has
to be calculated if prices change.

It is not possible to compare the results to those derived from exact
solutions to the multi-component model. However, the alternative to the
multi-component model is to use the future profitabilities from the single-
component model as replacement and ranking criterion, and we are able to
compare the results to this alternative. From Fig. 1 and Table 4 it can be
concluded, that for low replacement costs (i.e. when the need for heifers
exceeds the supply) the multi-component model improves the economic
result considerably compared to the usual single-component model. For
high replacement costs (where the supply of heifers is sufficient) the result is
almost the same no matter if the single or multi-component model is applied.
The reason is that for increasing number of heifers the multi-component
future profitability of eqn (20) converges towards the value of the single-
component future profitability of eqn (5) thus making the two criteria
equivalent if the number of heifers is sufficiently large.

In such a situation the only advantage of the multi-component model is
the information concerning culling of heifers as described in section 3.4. The
information is given as the production value of the heifer, and the major
force of the method is that it places the heifer in the herd environment where
it belongs. In a herd where heifers are bought at the market, the value of a
heifer is just the market price which only depends on the state of the animal
in question. On the other hand, if only home-grown heifers are used as
replacements (for the reasons mentioned in section 1) the value of a heifer
can not be determined by calculations only relating to that particular
animal. Instead, the following questions will have to be considered: How
many other heifers at similar age have we got? What is the future need for
replacements (expressed by the current herd quality)? The value of the heifer
heavily depends on the answers to these questions, and this dependency is
directly taken into account .in the multi-component model.

An examination of the effects in Figs 2 and 3 confirms that the production
value of pregnant heifers depends very much on the present herd quality and
the number of heifers in a state. For younger heifers the effect of present herd
quality almost vanishes because of the decreasing correlation between
present and future quality over increasing time lag. The effect on number of
heifers in the particular state in question is still present but to a much smaller
extent than for pregnant heifers. The production value of the heifers may be
calculated in any situation, and in combination with the alternative value as
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defined in section 3.4, it is very important in the decisions concerning how
many heifers to raise for future replacement. Also, in a situation with limited
housing capacity the information is relevant. Since the value of this
information concerning heifers is even more important in a situation with
high replacement costs (because the supply of heifers in those cases exceeds
the demand), it is relevant to use the multi-component model even in a
situation with high replacement costs, where the benefit in the cow herd is
small.

As concerns the goodness of fit of the approximations in eqns (8) and (15),
the regression analyses resulted in R? values of 0-71 in eqn (8) and in eqn(15)
the values varied from 0-64 to 0-68 under the standard conditions (Table 3).
The estimates of the autoregression coefficient of eqn (15) varied from 0-76 to
0-79 (standard conditions, Table 3) showing a high degree of autocorrelation
in herd quality over time. All effects in the models were highly significant,
and the parameters were very precisely estimated. Thus, the overall
impression is that the models used in the approximations seem to fit quite
well.

The supply of heifers has been identified as a limiting restraint on the
replacement problem in many dairy herds. The basic idea of the multi-
component approach is to consider in what way the limiting restraint
logically affects the known optimal solution to the unrestricted problem.
Then the influence of the restraint is approximated by a function G(/ )having
the desired logical properties, and finally the parameters of the function are
estimated from simulated data.

There are several other limiting restraints on the replacement problem in
dairy herds. The most obvious one at the time being is the milk quota, but
also feed supply and/or labour might be considered. Similar problems exist
in other multi-component systems as for instance herds of other animal
species. A much wider range of problems involving replacement combined
with general resource allocation is then faced, and it is relevant to consider
whether the multi-component approach of this paper also might be used in a
solution of such problems. It seems natural to expect that the basic idea of
this study is applicable in any multi-component replacement problem
subjected to some limiting restraint, but the actual choice of the function
G(I) depends on the specific problem. Thus, the kind of function used in this
study may not apply to other problems.
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Applicational perspectives

1. Introduction

The applicational perspectives of the techniques
discussed in this thesis cover at least the following
three areas:

1) Research. The models may be used as tools in
the identification of traits which must be consid-
ered in the replacement decision. Furthermore
the influence of prices and other conditions on
the optimal policies may be studied.

2

~—

Development of methods to be used in practice.
At present the Markov decision programming
techniques are too time- and memory-consu-
ming to be used in practice in connection with a
commercial animal herd. However, the models
may be used in the development of more sim-
ple operational methods.

3) Direct application in commercial herds. Within
the foreseeable future direct application of the
techniques may become realistic.

2. Application in research

Most of the studies mentioned in the previous
chapters have only been used for research purpose.
In dairy cows results have been obtained concern-
ing the influence of prices and herd level of milk
yield on the optimal policies (Kristensen and
Ostergaard, 1982; van Arendonk, 1985). The influ-
ence of changes in reproduction have been studied
by van Arendonk and Dijkhuizen (1985), and the
influence of seasonal variation in prices and per-
formance has been studied by van Arendonk
(1986). Kristensen (1987) studied the influence of
the genetic class (defined from the breeding value
of the father) on the length of the herd life time of
a cow. The effect of a milk quota was studied by
Kristensen (1989). The effect of clinical mastitis
has been studied by Stott and Kennedy (1990) and
at present by Houben et al. (1992).

In sows, similar studies were carried out by
Huirne et al. (1988) in order to determine the influ-
ence of prices, herd level of litter size and time in-
terval from weaning to conception.

Another kind of studies have had the objective
of studying the economic value of culling informa-
tion. An example in dairy cows is Kristensen and
Thysen (1991a) (Chapter X), who studied the pro-
blem in the presence and absence of a milk quota.
Other examples in dairy cows are Dijkhuizen and
Stelwagen (1988) and Marsh et al. (1987). In sows
a study was carried out by Dijkhuizen et al.
(1989).

3. Development of methods to be used in
practice

As long as direct application of the techniques in
commercial herds is prohibitive, they may be used
indirectly. One possibility is to determine an opti-
mal policy under a set of standard conditions and
apply that policy in other herds ignoring the indivi-
dual deviations from the standard conditions. Thus
results from Kristensen and stergaard (1982)
show that the ranking of animals is very stable
towards changes in prices. The consequences of
using a ranking determined under standard condi-
tions under other conditions may be determined by
comparing the results under the standard ranking
to results under optimal ranking under the condi-
tions of the individual herd. The work of Kristensen
and Thysen (1991b) (Chapter XI) studies this pro-
blem in the presence and absence of a milk quota.
Also van Arendonk (1988) has suggested this
method.

The optimal ranking determined by the Markov
decision programming techniques may also be
compared to other more operational ranking crite-
ria as it was done by Kristensen and Thysen
(1991b).

No similar studies known to the author have
been carried out in sows.
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4. Direct application in commercial herds

Even though the techniques presented in this thesis
are at present prohibitive for direct application the
situation may very well change in the future.
Powerful personal computers may very soon beco-
me standard equipment of commercial herds.
Furthermore, the operating systems develop, and
multi-tasking systems have already been introdu-
ced in the personal computer environment. In such
systems the time spent on a single job is not so
crucial, because the computer may simultaneously
be used for other purposes. In Figure 1, relative
performances of personal computers used in the
research behind this thesis have been compared.
The development over these few years clearly illu-
strates that what is prohibitive today may very well
be possible tomorrow.

If the relative performance of personal compu-
ters will continue to improve over the following
years, the time is not far ahead when a direct appli-
cation of the techniques of this thesis is technically
possible. However, this does not necessarily imply
that it is also appropriate. It is in no way impos-
sible that the applicational scope of the techniques
also in the future will be limited to the areas men-
tioned in Sections 2 and 3 of this chapter.

Relative performance
100

40

20

T T J

T I T
8086 8087 80287 80386 80486

Micro processor

Figure 1. The approximate relative performance of selected
personal computers in the determination of an optimal replace-
ment policy for the model described by Kristensen (1989). The
computer with a 8086 micro processor was purchased in 1984,
and the 80486 computer was purchased in 1991.
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5. Conclusion

We may conclude that at present the applicational
scope of the techniques is limited to studies of the
traits and conditions that influence the optimal re-
placement policies and to comparative studies in
the development of operational methods to be used
in commercial herds. In the future it will probably
be technically possible to use the techniques direct-
ly in commercial herds. Whether it is appropriate
or not will depend on the results of the compara-
tive studies, and no final conclusion can be drawn
from the results of this thesis.
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In order to determine the value of culling information, the net returns to housing, labour
and management were calculated analytically using three different replacement policies in
the presence and absence of a milk quota. The conclusions were that in the absence of a
milk quota there are considerable benefits from using a decision support system, but under
a quota the benefits are negligible if compared to the very simple policy of only replacing
cows which fail to conceive within 238 days. If a system based on calculations assuming no
quota is used under a quota the dairy farmer will be directly misinformed. Decision support
systems for culling should be specifically designed for the quota situation, where reduc-
tions of costs are the most important means for improving herd net returns. Emphasis
should therefore be put on information that support reductions on average costs of keeping
a cow. Key words: Dairy cow, replacement, decision support.

INTRODUCTION

The dairy cow replacement problem has been the object of several studies in the literature.
The preferred tool for optimization has been stochastic dynamic programming, and very
detailed models have been developed by van Arendonk (1985, 1986), van Arendonk &
Dijkhuizen (1985) and Kristensen (1987, 1989). The works mentioned have resulted in
profound knowledge of the nature of the problem as well as the factors influencing the
optimal replacement policy. Further Kristensen (1989) has discussed the problem of
adjusting such models to fit a situation with a milk quota.

Thus from a theoretical point of view the replacement problem should be regarded as
solved to a satisfactory degree. The detailed models, however, are at present not suitable
for practical use in commercial dairy herds because of the extreme amount of computing
time required to get an optimal policy. Therefore alternative approaches must be consid-
ered to provide the dairy farmer with culling information. In a paper of van Arendonk
(1988) one method has been described, but the situation with a milk quota has not been
considered, and the benefits from the method has not been compared to those of other
alternatives.

In Denmark a decision support system for culling of dairy cows in commercial dairy
herds is under consideration. In that connection the purpose of the present paper is to
investigate the economic value of culling information for situations with and without
quotas. This value is very important because it sets an upper limit on the costs of the very
decision support system. In a later paper various methods for ranking of cows for
replacement will be evaluated.

In order to determine the value of culling information the net returns to housing, labour
and management were calculated using three different replacement policies in situations
with a milk quota as well as situations without a milk quota.
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Similar studies have been carried out under American and Dutch conditions by Marsh et
al. (1987) and Dijkhuizen & Stelwagen (1988), respectively. However, neither of those
have considered situations with a milk quota. Another difference from the present study is
that the works mentioned are based on stochastic simulation. In the present study the net
returns are calculated analytically from a stochastic replacement model based on dynamic
programming.

Theoretical aspects of a milk quota

Kristensen (1989) found that the variation in future profitability due to variation in mitk
yield and calving interval among individual cows is considerably smaller under a milk
quota than in situations without a quota. (The future profitability is defined as the
gain—positive or negative—from keeping the cow for at least one additional period instead
of replacing it immediately).

These results indicate that the economic value of information on milk yield and calving
interval should be less under milk quotas. By relatively simple mathematical arguments it
can be shown that the reason is the very nature of the production quota. The net returns
(R) per cow per year as a function of milk yield (¥) per cow per year can be split up in a
‘“‘constant’’ part ¢, which is independent of milk yield, and a part which is fairly propor-
tional to milk yield (except for a decreasing gross feed efficiency). Thus we have

R=c+(p,—0.4p/le)Y 1

where p,, is the milk price, pyis the price of a Scandinavian Feed Unit (SFU) and e is the
gross feed efficiency. The constant 0.4 is the theoretical energy requirement in SFU to
produce 1 kg fat corrected milk (4%). For convenience we shall assume e to be constant.

In a situation without a milk quota, the total net returns (H) of the herd are set by the
number of cows (N):

H=RN=cN+(p,—~0.4p,/e) YN. 2)

If a milk quota of M kg 4% milk is introduced the number of cows and the average milk
yield must be adjusted to meet the quota. Thus the total net revenue H is set by the size of
the milk quota:

H=RMIY)= cM/Y+(p,~0.4p;/e) M. 3)

A higher value of a high yielding cow compared to a low yielding cow is due to & positive
marginal net return from increased milk yield. Therefore it is relevant to investigate the
marginal value of larger milk yield per cow. From Eq. 2 we get

dHIdY = (p,,—0.4p,/e) N. C))

Under the assumptions made, the marginal value is seen to be constantly equal to the gross
margin per kg of milk, which under usual conditions is positive. In the quota situation we
get from Eq. 3:

dH/dY = — cM/Y?, ®)

The constant ¢ contains the costs, that are directly related to the number of cows (the
costs of keeping a cow). It can be calculated as the value of calf and weight gain less feed
costs for maintenance, gain and embryo, and other costs that do not depend on yield. Thus
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under usual conditions ¢ will be negative, which means that the marginal value also in this
case is positive, but unlike Eq. 4 it is decreasing by the square of milk yield.

Realistic values of p,,, p,, e and ¢ could be 2.70 Dkr, 1.60 Dkr, 0.9 and —4000 Dkr.
respectively. If these values are used in Eqgs. (4) and (5) we find from (4) that the marginal
value is 1.99N without a quota and 4000 M/Y? under a quota. If we assume the housing
capacity to be N=100 cows (no quota) and the milk quota to be M=600000 kg milk (no
restriction on herd size) the marginal value of 1 kg additional average milk yield of the herd
is as shown in Fig. 1.

It should be emphasized that the two curves of the figure do not apply to the same herd.
Like Eqs. (4) and (5) they reflect the pure effects of limits in either herd size or milk
production. The situation of a herd not using a quota entirely is not covered by this very
simple model. However, the parameter values used in the figure have been chosen in order
to make the two curves comparable at a realistic level of milk yield (from 6 000 kg milk and
up).

As it appears from Fig. 1, the marginal value of increased milk yield for any realistic
level of milk yield is much smaller under milk quota than without a quota. At an average
milk yield of 7000 kg the marginal value is more than 4 times larger without a quota. In
other words the economic advantage of increasing the average milk yield of the herd
through replacement is much smaller in a situation with a quota than without a quota
where the housing capacity is the major limitation.

Also the costs of keeping a cow (expressed by ¢) should be considered. Under a quota,
the marginal value in Eq. (5) is proportional to c¢. Large costs of keeping a cow (i.e. ¢
numerically large) mean larger marginal value and consequently larger propensity to
replace because of low milk yield. Without a quota the situation is different, since ¢ does
not influence the marginal value at all, as it is seen from Eq. (4).

The benefits of decreasing the average costs of keeping a cow by means of replacement
is not larger under a quota than without a quota, as the number of cows is smaller rather
than larger. Relatively, however, decreasing costs becomes more interesting under milk
quota, because the possibilities to increase herd returns by higher milk yield are vanishing.

The difference in the marginal value of increased milk yield per cow may also be

Fig. 1 Marginal value of an addi-
tional average milk yield of 1 kg
4% milk. The marginal value is
expressed on herd basis with 100
cows without milk quota or a
quota of 600000 kg 4 % milk and
100 - the number of cows needed to
use the entire quota. Under a
quota no restriction on herd size
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explained by intuitive arguments. The optimization of replacement has as its basic purpose
to ensure that at any time the most effective cows are used for production. Without a
quota, where housing capacity is the major limitation, individual efficiency is equivalent to
herd efficiency, because the number of cows is fixed. Under a (sufficiently low) quota the
housing capacity is not limiting, which means that the efficiency of the individual animal is
not necessarily equal to herd efficiency. If the quota is not met at the current efficiency
there will always be the possibility to increase the number of cows by one or more
animals. This is particularly relevant when the costs of keeping a cow (c in Eq. (5)) are low
and/or the average milk yield is high (cf. Fig. 1).

MATERIAL AND METHODS

As a consequence of the arguments of the previous section, we should expect the value of
culling information, that primarily includes milk yield (directly and indirectly) to be
considerably lower under a milk quota than without a quota. In order to test this
hypothesis the net returns to housing, labour and management were calculated using 3
different replacement policies in situations with a milk quota as well as situations without a
milk quota. The net returns are expressed relative to the most limiting factor, i.e. per kg
milk under quota and per cow per year without a quota.

The three policies were formulated as follows: 1) Replace cows that fail to conceive
within 154 days; 2) replace cows that fail to conceive within 238 days; and 3) replace cows
according to an optimal policy from the stochastic replacement model used by Kristensen
(1989).

Policy 1 and 2 were chosen because they match two of the policies tested in a similar
study by Dijkhuizen & Stelwagen (1988) who compared the returns from 4 policies in
situations without a milk quota. In this study Policies 1 and 2 are the same no matter if a
milk quota is present or not. Policy 3, on the other hand, is different depending on the
presence or absence of a milk quota. In each situation a policy is used that maximizes net
return relative to the most limiting factor (i.e., per kg milk or per cow respectively). In the
following an optimal policy in the absence of a quota is denoted as Policy 3a, and an
optimal policy under a quota is denoted as Policy 3b.

Under Policy 1 and 2 cows were voluntarily replaced at 32 and 40 weeks after calving
respectively. Under policy 3 cows were voluntarily replaced at the optimal stage of
lactation depending on the individual properties of the cow.

In similar studies Marsh et al. (1987) as well as Dijkhuizen & Stelwagen (1988) have used
stochastic simulation models for evaluation of policies. In this study a direct calculation of
net returns is carried out. The calculations are based on the stochastic dynamic program-
ming model used by Kristensen (1989), which may be regarded as a Markov decision
process. The biological parameters of the model are published by Kristensen (1986). To
describe the method used for calculation we shall introduce the notation of such process.

The system (a cow) is defined by its state i (i=1,...,I) defined by the present properties
(genetic class, lactation number and stage, milk yield in previous and present lactation and
expected length of the calving interval). As soon as the state is observed we will have to
choose an action d (in this case d=1, 2 for ‘‘keep’’ or ‘‘replace’’). A set of actions (one for
each possible state) makes up a policy s. We shall denote as s(i) the action that the policy s
defines for state i. Depending on the state and action, a reward r,‘-’is gained (in this case the
reward is the net return). Further we assume that some physical quantity denoted as m¢ is
involved. In this case the physical quantity may either be the amount of milk produced by
a cow in state / when the action d is taken or it may be the duration of the present stage
depending on whether we are producing under a quota or not. The transition probability
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from state i at the present stage to state j at the next stage also depends on the action
taken, and it is denoted p{. If d=s(i) the symbols r{, m{ and p § are also written as r;, m{and
pj; respectively. It is possible to show that for any policy s, we have:

I
emifi=ri+ > pift, i=1,..1, 0]
=1

where g* is the average net return per unit of the physical quantity represented by m;] under
the policy s. In the equations (7), f3, ..., f} together with g° must be regarded as unknowns.
The variable f} is called the relative value of state i under the policy s, but it is of no
interest in this connection. Depending on whether m; is the milk yield or the duration of
the stage, g* gives the average net return per kg milk produced or per unit of time (i.e. per
cow per year). The I equations of (7) may be solved for the unknowns g*and f3, ..., f7if we
add the restriction fj=0. Thus for any policy we can calculate the net revenue per cow per
year and per kg of milk produced by solving a set of I+1 simultaneous linear equations.

The model used contains approximately 180000 states, so in principle a set of 180000
linear equations should be solved involving the inversion of a matrix of the dimension
180000 180000. However by using a technique called hierarchic Markov processes
developed by Kristensen (1988; 1989) the number of equations to be solved are reduced
to 6.

The direct calculation of net returns has the advantage over stochastic simulation by
random number generation that it reduces the calculations drastically and avoids the
problem of variation in simulation results without reducing the stochastic elements in any
way. Differences between returns from policies are therefore absolutely precise and not
influenced by random variation.

The prices and other conditions used in the calculations are shown in Table 1.

RESULTS AND DISCUSSION

The technical and economic impacts of the replacement policies are shown in Table 2.
Policy 3 a, which is optimal in the absence of a quota, is characterized by a very intensive
culling for milk yield and reproductive performance. Thus the average milk yield is 6.6 %
higher than under Policy 2 where no culling for milk yield and almost no culling for length
of calving interval takes place. The more intensive culling under Policy 3a is also
illustrated by the fact that the average stage of lactation for replacement (voluntary and
involuntary) is 7 weeks earlier than under Policy 2.

Table 1. Conditions used in the calculation of net returns

Prices (Dkr)
Milk (kg FCM) 2.40
Basic food (SFU) 1.30
Food for milk production (SFU) 1.45
Calf 1 400.00
Heifer 9 000.00
Young cow (kg live weight) 11.50
Older cow. (kg live weight) 11.00

Interest rate (corrected for tax and inflation, %) 3

Herd level of milk yield (week 140, st lact.) 5 800.00
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Policy 3b, which is optimal under a quota, is in fact not very different from Policy 2. The
average milk yield is only 1.4 % higher and the average stage of lactation for replacement is
only 3 weeks earlier than under Policy 2. Thus the culling for milk yield and reproductive
performance is much less intensive under Policy 3b compared to 3a.

If we turn to the economic results, it appears that in the situations without a milk quota
Policy 3a is evidently better than the others. The net returns to housing, labour and
management are 3.3% higher than for Policy 1, which ranks second. The results in
absolute figures are not directly comparable to those of Dijkhuizen & Stelwagen (1988)
because they included housing costs in the calculations. Since, however, the housing costs
are independent of the repacement policy, the differences between net returns from
different policies may be compared.

In this study the difference between Policy 3 and Policy 1 equals 308 Dkr per cow per
year. The corresponding difference in the study of Dijkhuizen & Stelwagen was 33 Dfl. or
approximately 125 Dkr per cow per year (under ‘‘average’’ level of reproductive perform-
ance). Thus the benefits from policy 3 seem to be larger under Danish conditions than
under Dutch in the absence of a milk quota. The reason for this is probably, that under
Danish conditions the optimal replacement rate (as well as observed rates) is considerably
higher than in most other countries due to a relatively high value of culled cows.

Under a quota the impression is fundamentally different. Naturally Policy 3b is the most
profitable, but the benefits compared to Policy 2 are less than 1% in net returns to
housing, labour and management. It is therefore evident that the costs of a decision
support system for culling must be very low in order to be profitable. A rough estimate of
the maximum costs is approximately 45 Dkr per cow per year.

Policies 1 and 2 primarily affects herd profitability by preventing low milk yield per cow
per year to result from long calving intervals. In policy 3a and 3b, the yield ability of
individual cows is also taken into account, which leads to a more efficient selection. But
with a smaller marginal value of average milk yield under quota, the benefits become
smaller.

As it appears from Table 2 the mutual ranking of Policies 1 and 2 depends on the

Table 2. Technical and economic impact of different replacement policies

Policy
1 2 3a‘ 3b”
Milk yield, kg/cow/year 7 082 6 896 7 350 6 991
Average time for replacement,
weeks after calving® 25 28 21 25
Annual replacement rate 50 35 59 38
Net returns to housing,
labour and management
Dkr/cow/year, abs. 9 236 9150 9 544 9 319)
Dkr/cow/year, rel. 100.0 99.1 103.3 (100.9)
Net returns to housing,
labour and management
Dkr per 1 000 kg milk, abs. 1304 1327 (1299) 1333
Dkr per 1 000 kg milk, rel. 100.0 101.8 (99.6) 102.2
Number of cows assuming
quota, relatively 100.0 102.7 96.4 101.3

 Policy 3a is an optimal policy without a quota, and policy 3b is optimal under a quota.
® Includes involuntary replacements.
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presence or absence of a milk quota. The reason for this is intimated by the technical
results which show that Policy 1 in its consequences is quite similar to Policy 3a, and
Policy 2 is quite similar to Policy 3b.

The net returns per 1000 kg milk under policy 3a is 1299 Dkr. This amount is the
expected net revenue to be gained if the optimal policy from a situation without a milk
quota is used under a quota. It should be noticed that under a quota the returns from policy
3a are lower than even those from Policy 1 and considerably lower than those from Policy
2. These results show that a decision support system based on maximization of net
revenue per cow will directly misinform the dairy farmer if used under a quota.

CONCLUSIONS

In the absence of a milk quota there are considerable benefits from using an efficient
selection of cows with the highest expected milk yield, but under a quota the benefits are
negligible if compared to the very simple policy of only replacing cows which fail to
conceive within 238 days. If a system based on calculations assuming no quota is used
under a quota the dairy farmer will be directly misinformed. Decision support systems for
culling should be specifically designed for the quota situation, where reductions of costs
are the most important means for improving herd net returns. Emphasis should therefore
be put on information that support reductions on average costs of keeping a cow by
replacing, for example, cows with a high risk of diseases.
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The preferred tool in theoretical dairy cow replacement studies has been stochastic
dynamic programming. Under practical conditions, however, this method is less suitable
due to computational complexity. In order to develop a ranking criterion for practical use,
two criteria were tested by means of stochastic simulation based on random number
generation. Under the first criterion the ranking was provided by a dynamic programming
model, but instead of herd individual conditions a set of standard conditions was used.
Under the second criterion the cows were ranked according to their expected net returns to
housing, labour and management during the next 12 months. Both criteria were tested in
the presence and absence of a milk quota. The simulation results showed that both criteria
are suitable for practical implementation in both situations. Thus the final choice depends
on other considerations including implementation and operation costs as well as compre-
hensibility. A third criterion called expected maximum net returns, which has been
suggested in the literature, was considered, but, rejected from theoretical and empirical
reasons. Key words: culling information, decision support, milk quota.

INTRODUCTION

The dairy cow replacement problem has been the object of several studies in the literature.
The preferred tool for optimization has been stochastic dynamic programming, and very
detailed models have been developed by van Arendonk (1985, 1986), van Arendonk &
Dijkhuizen (1985) and Kristensen (1987, 1989). The works mentioned have resulted in
profound knowledge of the nature of the problem as well as the factors influencing the
optimal replacement policy. Further Kristensen (1989) has discussed the problem of
adjusting such models to fit a situation with a milk quota.

Thus from a theoretical point of view the replacement problem should be regarded as
solved to a satisfactory degree based on detailed models. These models, however, are at
present not suitable for practical use in commercial dairy herds because of the extreme
amount of computing time required to get an optimal policy. Therefore alternative ap-
proaches must be considered to provide the dairy farmer with culling information. In a
paper of van Arendonk (1988) one method has been described, but the situation with a milk
quota has not been considered, and the benefits from the method has not been compared
to those of other alternatives.

In Denmark a decision support system for culling of dairy cows in commercial dairy
herds is under consideration. In that connection the purpose of the present paper is to
evaluate different ranking criteria of cows in commercial dairy herds in the presence and
absence of a milk quota. The evaluation will be based on the total net returns to housing,
labour and management from all dairy cows of the herd when a certain ranking criterion is
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used. The net returns of the herd are calculated by means of a stochastic simulation model.
In a previous paper (Kristensen & Thysen, 1990) the economic value of culling information
has been studied.

THE SIMULATION MODEL

A model consisting of dairy cows and the associated female offspring was used. Each cow
and heifer is in the model represented by its state defined by the values of a number of
state variables representing the most important characteristics of the animal. Transitions
from one state to another are possible at regular 4 week intervals (stages). The state of
each animal at the next stage is determined by drawing a random number from the relevant
probability distribution defined by the present state (and whether the present animal is
kept or not). The main characteristics of the model are summarized in Table 1. A fixed
maximum herd size must be defined by the user.

The distributions and mutual relations of the state variables of cows have been de-
scribed and estimated by Kristensen (1986). The milk yields are corrected for herd level,
breeding value of father and length of the calving interval. Cows may be replaced
voluntarily or involuntarily. The involuntary replacements caused by death or bad health
are governed by probabilities depending on lactation number and stage of lactation.
Furthermore, cows that fail to conceive within 238 days after calving are always replaced
(at 280 days after calving).

The voluntary replacement policy is represented by a set of numbers defining the
ranking in descending order of the possible states in the model according to alternative
estimates of future profitability as defined in a later section. The replacement decision is
modelled as follows: At each time stage cows after involuntary cullings and heifers ready
for calving are counted. If the number of cows is less than maximum herd size, the

Table 1. Main characteristics of the simulation model

Cows
Number of 4 week stages per lactation 11-18"
Maximum number of lactations per cow 6
Replacement if not pregnant before 238 days
Stochastic state variables

Breeding value (milk yield) of father 5 classes

Milk yield, previous lactation 15 classes

Milk yield, present lactation 15 classes

Length of calving interval 8 classes
Deterministic state variables

Lactation stage 18 classes

Lactation number 6 classes
Total number of states (approximately) 180 000
Probability of a calving to result in a

surviving heifer 0.45

Heifers
State variable

Age or reproductive status 4] classes
Minimum age of st breeding 56 weeks
Probability of conception per stage 0.33
Age of disposal of open heifers 116 weeks

¢ Depending on the length of the calving interval.
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available heifers are used for increasing the herd size to maximum. The remaining heifers
(if any) are used for voluntary replacements of the lowest ranking cows as long as the
ranking number is below a limit defined by the user. In the simulation model the user may
allow for buying heifers at the market, but in the presented study, only heifers raised in the
same herd are used for replacements.

At the beginning of each stage, the milk yield and net returns (to housing, labour and
management) of each individual cow are calculated from the state. Female calves are
transferred to heifers and heifers are transferred to cows at market prices. The costs of
raising heifers are not included.

Heifers are only represented by their age and/or pregnancy status. Heat detection and
insemination of heifers is initiated at the age of 56 weeks, and a heifer is culled at the age of
116 weeks if still not pregnant.

When the simulation model is used in a quota situation, the ranking numbers are
calculated in a relevant way (i.e., aiming at maximum net returns per kg milk). The quota
as such is not included, and followingly short time adjustments of herd size are not
considered. Since a fixed herd size is assumed, the simulation results should be interpreted
as the net returns per kg milk being gained in the long run under the ranking criterion. In
practise the number of cows should be adjusted afterwards to meet the quota by the
achieved milk yield.

In all cases a dairy herd of 100 cows was simulated over a period of 100 years in order to
decrease the random variation on results.

RANKING CRITERIA

Dynamic programming with standard conditions

Prices and other conditions vary from herd to herd and therefore the optimal policy of one
herd is not necessarily optimal in another. In principle it would be necessary to calculate
an optimal replacement policy of each individual herd. As mentioned in the introduction a
direct implementation of a detailed dynamic programming model is not suitable at present
because of the extremely comprehensive calculations involved. Furthermore, precise
information on prices, especially feed prices, are difficult to obtain.

However, Kristensen & @stergaard (1982) have shown that the mutual ranking of cows
is very stable under variations in prices and herd level of milk yield. Thus it might be
relevant to calculate an optimal policy and an optimal mutual ranking of states under some
standard conditions and use this ranking in all herds. This method has been used in The
Netherlands (van Arendonk, 1988). We shall refer to this criterion as dynamic program-
ming with standard conditions (DPS).

Table 2. Standard prices and herd level of milk yield

Prices (Dkr)

Milk (kg FCM) 2.40
Basic feed (SFU) 1.30
Feed for milk production (SFU) 1.45
Calf 1 400.00
Heifer 9 000.00
Young cow (kg live weight) 11.50
Older cow (kg live weight) 11.00
Interest rate (corrected for tax and inflation, %) 3
Herd level of milk yield (week 1-40, 1st lact.) 5 800.00

20-918003
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The standard conditions used here are presented in Table 2. By use of a random number
generator, 100 sets of alternative conditions have been generated. Denote as f° a vector
with 7 elements representing the prices (excluding the price of older cows) and the herd
level of milk yield in Table 2. An alternative set of conditions f' (i=1, ..., 100) is generated
as follows:

fi=240.15r040  i=1,...,100, 1)

where r'is a diagonal matrix of which the diagonal elements form an independent random
sample drawn from an equal distribution over the interval [—1;1]. Eq. (1) expresses that in
each set of conditions the individual prices and level of milk yield are varied independently
over an interval defined from the original value of Table 2 plus or minus 15 %. The price of
older cows is linked to the price of young cows in such a way that the price difference
varies in a similar interval.

Several ranking criteria involving future profitability can be derived from a dynamic
programming model. Three alternative definitions of future profitability were tested:

A. The advantage of keeping the cow for at least 4 weeks compared to immediate
replacement.

B. The advantage of keeping the cow until it is replaced involuntarily or because of age
compared to immediate replacement.

C. The advantage of keeping the cow at least until the next calving compared to
immediate replacement.

In all cases the future profitability may be positive or negative.

For each of the 100 sets of conditions optimal policies and ranking according to A, B and
C were calculated in the presence and absence of a milk quota using the optimization
model described by Kristensen (1988; 1989; 1990). The economic results of the three
definitions were compared, and the best one was chosen for comparison with ranking of
cows under standard conditions.

Expected net returns during the next 12 months

A very simple ranking criterion is the expected net returns during the next 12 months
(ENR). In the absence of a quota we use the expected net returns per cow, and under a
quota we use the expected net returns per 1000 kg milk. A period of 12 months is used
because it usually contains the next calving.

The ENR is calculated by means of stochastic simulation. In each of the 180000 states
13 additional 4 week stages are simulated a number of times. For each replication the ENR
is calculated, and the final ranking is defined by the average ENR over replications. If a
cow is involuntarily replaced in a replication the results of the new heifer are used in the
remaining period.

Expected maximum net returns

Based on works of Kuipers (1982) and Congleton et al. (1988) a third criterion called
expected maximum net returns (EMNR) has been considered. The idea is to calculate the
expected average net returns per cow per stage (or per 1000 kg milk under a quota) from
the present stage and 1, 2, 3, ... stages ahead until the maximum age is reached. The
EMNR is defined as the largest of these calculated averages.

Unlike the ENR criterion, the EMNR is not calculated over a fixed period ahead, but
over the period (short or long) that maximizes the expected average returns. In other
words it is the expected average returns until a cow identical in all respects (including
present age) to the present one profitably could replace it. On the other hand it is not the
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period until the optimal replacement time. If, for instance, a cow has got a very high
EMNR, the optimal replacement time may very well be later than the time that gives the
highest EMNR. In that case the new cow is typically less profitable than the present one,
and thus it would be profitable to keep for a longer period.

Because of these arguments, which were confirmed by empirical simulation results, the
EMNR criterion was rejected.

RESULTS

Ranking on future profitabilities

In Table 3 the simulation results using ranking on future profitabilities defined according to
A, B and C are compared in the absence as well as the presence of a milk quota.
Furthermore, the simulation results are compared to those under optimal policies without
any restrictions concerning heifers.

In the absence of a quota the results are presented as means and percentiles of net
returns per cow per year to housing, labour and management. In this situation it is
assumed that only home raised heifers enter the herd, and that if a heifer is available it will
always replace the lowest ranking cow (in other words all pregnant heifers will enter the
herd as it has been common practise in Denmark).

In the presence of a quota the results are presented as means and percentiles of net
returns per 1000 kg milk to housing, labour and management. In this situation the optimal
replacement rate is considerably lower than without a quota as reported by Kristensen
(1989). Thus the assumption that all heifers must enter the herd has to be relaxed.
Therefore heifers only entered the herd if the future profitability of the lowest ranking cow
was negative.

It appears from Table 3 that the 100 sets of conditions represent widely different
economic results. Thus under the optimal policies the net returns vary from 5128 to 14665
Dkr per cow per year in the absence of a quota, and from 844 to 1804 Dkr per 1000 kg milk
under quotation.

From the results, we find that in the absence of a quota the future profitability defined as
C is superior to A and B both when evaluated on means and extremes. Under a quota,

Table 3. Simulation results using future profitabilities defined in three alternative ways
(see the text for definitions) compared to results from optimal policies without any
restrictions on number of heifers

Net returns/cow/year Net returns/1 000 kg mitk
Per- Definition® Definition®
cen- Optimal Optimal
tile” policy A B C policy A B C
1 5128 —1 442 —1 188 —1 048 844 -10 -15 —13
5 6 553 —704 —708 —446 924 —4 -10 -9
50 9 402 —141 —168 —138 1 309 1 -2 —4
95 13 014 —54 —81 -60 1724 6 5 2
100 14 665 -8 —40 -27 1 804 8 7 4
Mean 9 540 -233 —-227 —185 1323 1 -2 —4

“? Calculated for each variable independently of the others.
b Deviations from optimal policy without restrictions.
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however, it appears that the future profitability should be defined as in A, but the
differences among definitions are small. Under definition A the economic result is even 1
Dkr better than under the optimal policy, but no significance should be attached to that.

Ranking on the DPS criterion

In Table 4 the simulation results using ranking on future profitabilities calculated under
standard conditions are shown. In the quota situation the future profitabilities are calculat-
ed according to Definition A, and in the absence of a quota Definition C is applied.

In the situation with no milk quota we find that the economic result under standard
ranking is even better than under the herd individual ranking: The difference, however, is
only 20 Dkr per cow per year, and in 98 cases out of 100 the numerical difference is less
than 100 Dkr. If we assume the differences to form an independent sample from a normal
distribution, the 20 Dkr superiority is significant at the 0.1% level. Thus the difference
seems to be real, even though the economic impact is negligible. The explanation seems to
be that the optimal replacement rate under the standard conditions just happens to be the
same as the one achieved when all heifers are raised and all of them enter the herd at
calving.

We can conclude, that the DPS criterion (with the future profitability defined according
to C) seems to be suitable for practical implementation in the absence of a milk quota.
Further the standard conditions should be chosen so that they fit the replacement rate
wanted.

Under a milk quota it appears from Table 4, that on average the standard ranking has
done quite well (only 2 Dkr below the optimal policy), but from the percentiles we see that
in some cases the loss compared to the optimal policy is rather large (up to 30 Dkr).
Therefore an adjustment of future profitabilities was considered. Define the replacement
costs as

c=cy—480c,—c,, (2

Table 4. Simulation results using future profitabilities calculated under standard condi-
tions (the DPS criterion) compared to the relevant results under herd individual conditions
from Table 3

Net returns/cow/year Net returns/1 000 kg milk

DPS criterion®

Per-
cen- Individual DPS cri- Individual Uncor-
tile? conditions terion’ conditions rected Corrected®
1 -1 048 -914 -10 -30 -10
5 —446 —411 —4 -13 -5
50 —138 —124 1 0 1
95 —60 -59 6 6 5
100 -27 -29 8 9 7
Mean —185 —165 1 -2 0

? Calculated for each variable independently of the others.
? Deviations from optimal policy without restrictions.
¢ The future profitability corrected according to Eq. (3).
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where ¢y, is the price of a heifer, ¢, is the price per kg live weight of a young cow and c. is
the price of a calf.

From the individual results under a milk quota it appeared that the standard ranking was
good when the replacement costs under the individual conditions were close to those
under standard conditions, but deviations increased when the numerical differences in
replacement costs increased. Therefore a correction of future profitabilities should be
related to the replacement costs. Several corrections were tested, but a good fit was
achieved by the following one:

fE=fit(c—cs)* 12002, 3)

where f¥ and f; are the future profitabilities of state i (corrected and uncorrected,
respectively), c is the replacement costs under individual conditions and c, is the replace-
ment costs under standard conditions.

The last column in Table 4 summarizes the results under corrected standard ranking
under a milk quota. It appears that when the corrections are carried out, the standard
ranking is just as good as the individual ranking (definition A). Thus we can conclude, that
the DPS criterion (with future profitability defined according to A and corrected as in Eq.
(3)) is also suitable under a milk quota.

Ranking on the ENR criterion
Under the ENR criterion the standard conditions of Table 2 were used. Some experimen-
tation with the number of replications in the calculation of ENR was done in the situation
without a quota. The results from the simulations are shown in Table 5. It appears that the
economic consequences depend very much on the number of replications, but from the
trend we can conclude that the result, where ENR is calculated over 100 replications must
be very close to the best possible under this criterion. The difference of 68 Dkr from the
result under an optimal policy clearly illustrates that also this criterion is relevant for
practical implementation in the absence of a quota.

Under a milk quota the ENR criterion was only tested with ENR calculated over 100
replications, since that number showed to be close to the ideal situation in the absence of a

Table S. Net returns (Dkr per cow per year and per 1000 kg milk) to housing, labour and
management under the ENR criterion compared to an optimal policy without restrictions
concerning heifers

Deviation from optimal policy

Number of
replications in Dkr/cow/ Dkr/1 000 kg
calculating ENR year” milk”
1 —574 -

10 —224 -

25 —-125 -

50 -90 -

100 —68 -3
Optimal policy

(abs. fig.) 9 544 1333

7 Average of 2 simulation runs over 100 years.
b Average of 10 simulation runs over 100 years.
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quota. The result (Table 5) shows that also under a quota this criterion is very relevant,
since the difference from the optimal policy is only 3 Dkr per 1000 kg milk.

DISCUSSION AND FINAL CONCLUSIONS

Both criteria tested have proved to be suitable for practical implementation in the presence
as well as in the absence of a milk quota, and the economic results under the two criteria
differ only insignificantly. Thus the final decision should be based on other considerations
than those presented in the previous sections.

From the test of the ENR criterion it is clear that ENR must be calculated very precisely
in order to give satisfactory results. The method used for calculation of ENR in this study
was stochastic simulation, which is very time consuming and therefore expensive. In an
implementation more simple deterministic methods should be considered, but it is very
important that the precision is not relaxed. That applies particularly in the quota situation,
where the value of culling information is considerably lower than without quotas as
reported by Kristensen & Thysen (1990).

On the other hand the ENR criterion has the advantage over the DPS, that it is very easy
to understand, whereas the future profitabilities used under DPS are rather abstract.
Furthermore the ENR criterion may easily be adjusted to include informations not
considered in this study (e.g. health data). If such information should be included under
the DPS criterion a completely new and very complicated replacement model had to be
constructed.

The final choice of criterion should be based on an analysis covering all aspects
including the costs of implementation and operation. In such analysis the results of this
study should be considered, but they only form one element of the problem.

If the DPS criterion is used without a milk quota, the future profitability should be
defined as the benefits from keeping the cow at least until next calving compared to
immediate replacement. Further it is important that the standard conditions give rise to an
optimal replacement rate close to the one desired.

Under a quota the future profitability should be the benefits from keeping at least for one
additional stage (4 weeks) compared to immediate replacement. The future profitabilities
should in this situation be corrected according to Eq. (3).
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Conclusions and outlook

In the introduction, the main purpose of this thesis
was defined as the adaptation of Markov decision
programming techniques in order to be able to
cope with the animal replacement problem in a sat-
isfactory way. The problems were identified as the
dimensionality problem, the uniformity problem
and possible herd restraints. It is now the time and
place to conclude to what extent the problems have
been solved.

We can conclude from the preceding chapters
that the problems are mutually inter-dependent. As
shown in Chapter VII, the solution of the unifor-
mity problem may also in some cases contribute to
the solution of the dimensionality problem by state
space reduction, and as it appears from Chapter
VI, the introduction of herd restraints makes the
dimensionality problem worse because such mo-
dels inevitable become very large when all animals
must be considered simultaneously. Thus a true so-
lution to the herd restraint problem will also in
some models contribute to the solution of the di-
mensionality problem.

The main contribution to the solution of the di-
mensionality problem is, however, the formulation
of the hierarchic Markov process. The computatio-
nal advantages of the method have been illustrated
by theoretical considerations and a numerical ex-
ample in Chapter II. The major forces of the tech-
nique may be summarized as follows:

1) The method is exact.

2) The method is much faster than the value iter-
ation method (i.e. the usual dynamic program-
ming technique) as it appears from Chapter
IL

3) The method makes it possible to calculate the
consequences of an arbitrary policy directly as
it appears from Chapter X. Furthermore it is
possible directly to calculate many technical
and economic results under a given policy as
discussed in several chapters (e.g. annual repla-
cement rate, annual milk yield, average litter
size etc.)

Since the method is faster than the usual tech-
niques it contributes significantly to the solution of
the dimensionality problem, because the optimiza-
tion of larger models becomes realistic in real
time. On the other hand, the dimensionality pro-
blem has not been solved. The limits of the poss-
ible have been raised, but not removed.

As concerns the uniformity problem, the Bay-
esian updating technique of Chapter VII has been
proposed. The force of the Bayesian approach is
that it constitutes a framework for dealing with im-
perfect knowledge. At any level of knowledge it is
possible to take an optimal action under the pre-
sent circumstances (with imperfect knowledge).
Thus the Bayesian approach seems more to be in
accordance with a real life situation. It is expected
that the method in particular will be relevant in deal-
ing with categorical effects (such as diseases) as
sketched in Chapter VII. However, that perspective
has to be tested on real data before any finite con-
clusion may be drawn. As concerns the application
to usual quantitative traits as milk yield or litter
size the method is considered to be a significant
contribution to the solution of the uniformity pro-
blem, because it makes it possible to distinguish
the variation caused by different effects and thus
explains the very nature of the variation in traits.
Furthermore the technique may in some cases re-
duce the size of the state space without loss of in-
formation.

Two different herd restraints have been conside-
red in this thesis. One restraint is a milk quota in
dairy cattle, which has been dealt with by the in-
troduction of an alternative criterion of optimality
maximizing average net returns per unit of milk
produced (Chapters V and VI). The new criterion
solves the long term ranking problem of cows in a
herd producing under a quota, but it does not solve
the short term adjustment problem of deciding
how many cows to use in the production at any
time. To include this feature we will have to turn to
the parameter iteration method applied in Chapter
VIII to an other herd restraint which was a limited
supply of heifers. It has been demonstrated that the
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technique is superior to the usual single-animal
models in a situation with shortage of heifers, but
it is not an all-embracing method that may be
transformed directly to all kinds of herd restraints.
The basic idea is to take advantage of the fact that
an optimal solution to the unrestricted problem is
known and then consider in what way the restraint
influences the total present/relative value of the
herd. This basic idea may also apply to other re-
straints, but in each case some hard work is left de-
termining the appropriate functions and parameters
involved. Thus the herd restraint has not been sol-
ved, but the framework of an approximate method
has been constructed.

A secondary purpose of the thesis was defined
as illustration and discussion of the applicational
perspectives of the techniques. In Chapter IX the
applicational areas of the techniques were identifi-
ed as research, development of methods to be used
in practice and direct application in commercial
herds. As illustrated in Chapters VI and X, we may
conclude that the techniques are useful tools in
research were the conditions and traits that influ-
ences the optimal policies may be studied. Further-
more they may be used in comparative studies in
the development of operational methods to be used
in commercial herds (cf. Chapter XI). As concerns
direct application in such herds, we must expect
that it will become technically possible, but whe-
ther or not it is appropriate will depend on the out-
come of such studies, and no final conclusion may
be drawn at present.

With regard to the need for future research acti-
vities, the solution of the dimensionality problem
should be given high priority. This may be done in
two different ways. One way is to raise the upper
limit concerning the size of state spaces to handle.
The day when a herd model as the one described in
Chapter VIII may be solved exactly is, however,
very far away, unless a real epoch-making discove-
ry is done. Furthermore it is a question whether not
the limits of the human mind regarding the ability
to grasp such a model will be reached before.
Another way to solve the problem would be to
consider some kind of state space transformation
which will reduce the state space with no (or at
least little) loss of information. A further develop-
ment of the Bayesian techniques might be a way of
doing this, but much further research in this area is
necessary.

Also the question of how to deal with traits re-
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lated to the health of the animal need to be studied.
Again the Bayesian technique might be a relevant
tool. It seems obvious that the question of herd re-
straints must be a main task in the future, since in
the real world animal production is performed in
herds. Therefore the idea of a simple comparison
of the animal in production with a possible repla-
cement is not valid if all animals compete for the
samie scarce resource or production quota.

These future research areas are reminders de-
monstrating that further methodological research
remains in order to fulfill the objective of this the-
sis completely, but it should be noticed that even if
all methodological problems were solved and, ac-
cordingly, the rather technical objective was fulfil-
led, only part of the job had been done. It seems
relevant also to consider the work in a wider per-
spective. On the long view, it is of course the idea
that the developed techniques should support the
farmer’s decisions on which animals to replace. In
other words, the techniques are intended to form
the central element of a decision support system.

None of the techniques presented have been im-
plemented in a decision support system, and it is
natural to ask why not. The situation is in no way
unique. Despite at least two decades of research in
optimization and simulation models, very little has
reached the farmer in the form of working decision
support systems. The 3rd International Congress
for Computer Technology in 1990 was devoted to
“Successful Practical Applications”. Afterwards a
participant ironically said that some of the applica-
tions presented at the congress were “successful”
while others were “practical” and some were just
“applications”. In other words, successful practical
applications seem to be exceptions. The title of the
4th congress in the same series “Farm Computer
Technology in Search of Users?” suggests that this
is a general feeling.

The lack of successful decision support systems
in animal production makes it relevant to consider
in general what the success of a decision support
system would depend on. In Figure 1 the basis of a
decision support system is sketched. The elements
of the figure should be interpreted as necessary
conditions (or bottle-necks) that must be fulfilled.
(In some cases they may even not be sufficient).

The necessary conditions are divided into 4
groups, depending on whether they are hardware
related, software related, method related or farmer
related. Some of the hardware conditions refer to
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Figure 1. The basis of a decision support system (DSS).

performance characteristics like speed, disk space
and internal memory. Some methods require even
very powerful computers. In the short run the per-
formance of computers may be a bottle-neck in the
development of decision support systems, but, as
illustrated in Chapter IX, the performance charac-
teristics of computers improve at a very fast rate,
so in the long run the performance of computers
will hardly be a problem. The same applies to
communication hardware making the computer
able to receive data from external sources like
classification of animals and milk from slaughter-
house and dairy, or from internal sources (sensors)
like temperature and conductivity of milk or
weight of animals. It may also be necessary to be
able to send data from the computer to automatic
equipment like milking robots or automatic con-
centrate feeding. The last condition mentioned in
the figure is the price which has to be sufficiently
low to make the investment in hardware profitable.

The software conditions refer partially to ope-
rating systems and communication software which,
however, is commercially developed concurrently
with hardware. The development of applications

(i.e. computer coding of optimization techniques
and data management) with good user interfaces is
more important in this context. Especially the user
interface has often been overlooked, because most
attention has been paid to the coding of the me-
thods developed. Nevertheless, a decision support
system with an improper user interface has no
chance on the market. The best way to ensure a
high level in software development (including user
interfaces) is probably to realize that this part of
the job should be handed over to specialists in pro-
gramming (e.g. employed by the advisory service).
The researcher, who developed the method, is usu-
ally not a programming expert, and furthermore he
or she is certainly not impartial in the assessment
of the applicational perspectives. On the other
hand, a rapid implementation of new relevant me-
thods demands a close cooperation between re-
searchers, advisory service and education. Just as
for hardware, the price of the software must be
sufficiently low to make the investment profitable.

At least in research, most attention has been
paid to methodology, in particular “optimization”
techniques in a broad sense which in this connec-
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tion also cover e.g. expert systems and simulation.
Several methods and prototypes have been devel-
oped and praised by the researchers themselves,
but as mentioned before, very little has reached the
farm level. Since the utility value of the methods
in several cases has been verified, we may con-
clude that lacking optimization techniques is hardly
a bottle-neck in the spread of decision support sy-
stems. Just as important, but less studied, is data
management. As a result of the technical progress
the number of data sources is assumed to increase.
Sensors and external communication lines are ex-
pected to provide huge amounts of registrations.
The transformation of these registrations to data
and information demands new methods for filte-
ring, organization of data bases and estimation of
parameters on herd level.

Last, but not least, the situation of the farmer
must be considered. Is the production large enough
to justify the purchase of a decision support sy-
stem, and can he afford it? Even if the answer is
yes, the education and lacking computer experien-
ce of the farmer may be a problem. This is probab-
ly the most limiting factor in the spreading of deci-
sion support systems. The lack of computer experi-
ence may to some extent be compensated by train-
ing and good user interfaces, but it should be re-
cognized that it may take a generation before the
average farmer is really familiar with computers
and considers them as just as natural tools as pen
and notebook. Also the educational level in a wi-
der sense than computer experience is important.
For instance, lack of knowledge on statistical theo-
ry may be a problem when dealing with stochastic
modelling, confidence limits, sensitivity considera-
tions etc.

This short general survey of conditions to be
met in order to create a decision support system
seems to show that it is not surprising that “suc-
cessful practical applications” are very few. The
main problem is that there has been extensive re-
search in methodology, but the level of software
development (in particular the design of user inter-
faces) and farmer education has not been raised si-
multaneously.

After these general considerations, focus will be
turned back to the specific problem of integrating
the methods presented in this thesis in a working
decision support system. As all examples of the
preceding chapters, this discussion will refer to a
commercial dairy herd under Danish conditions.
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The methods are very computer intensive, and
already this fact creates problems in relation to im-
plementation. If a method is implemented at a cen-
tral main frame computer, the farmer has to pay for
the time spent on optimization, and that will pro-
bably be too expensive. If it is implemented on a
local personal computer or work station, very high
demands on speed and internal memory must be
made. These demands necessarily make the com-
puter more expensive to purchase. Furthermore
there will be a communication problem, because
registrations on individual cow performance are
stored in a central data base. Thus a reliable exter-
nal link to the central data base is necessary (e.g.
in the form of a modem). Already these hardware
requirements show that ar present a direct imple-
mentation in a decision support system is out of
the question. On the other hand, it seems likely
that the hardware problems will be solved in the
foreseeable future, and that the local implementa-
tion probably will be preferred.

At present no software has been developed for
direct implementation. The problem of transfor-
ming the mathematically expressed methods into
effective computer algorithms with low time and
space complexity is in no way negligible, but, on
the other hand it can be done by a programming
expert. The user interface should as always be gi-
ven high priority, and in Denmark, the introduction
of the “Integrated Farm Management System” (Be-
driftslpsningen) at least provides a common stan-
dard. Such a standard is of great value in relation
to the training and education of farmers. Thus it is
concluded that the software related problems may
be solved.

As mentioned, the results of this thesis are a
contribution to the development of optimization
techniques. The data management problem is only
indirectly touched in Chapter VII, where the updat-
ing of individual traits is discussed. Until now, the
parameters of the models have been estimated
once for all, and the only adjustment to the indivi-
dual conditions is through a herd level of milk
yield which may be specified. It should be expected
that parameters estimated on individual herd data
would be better in the sense of less residual varian-
ce and thereby more precise predictions of the
future performance of cows. However, the amount
of data originating from one herd is usually too
small to be used for reliable estimation of parame-
ters.
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A solution to this problem might be a more in-
tensive application of Bayesian techniques. When
the decision support system is applied the first
time, a set of standard parameters are used, but as
observations are done in the herd, the prior para-
meters are updated using Bayes theorem, so that
the parameters after a few years will reflect the in-
dividual conditions of the herd. This may be regard-
ed as a generalization of the method described in
Chapter VII, where only animal specific parame-
ters arc updated. A necessary condition of using
such an approach is that the problems related to or-
ganization and filtering (e.g. for outliers) are sol-
ved. A personal point of view is that the introduc-
tion of Bayesian techniques to decision support sy-

stems and monitoring will become a main issue in
the research of the next decade, and if the research
is successful it may lead to the breakthrough of
decision support systems in animal production.

The conclusion is that an implementation of the
techniques in a decision support system is not ex-
pected within the next few years. It will only be re-
levant when (a) the necessary hardware is availab-
le at a sufficiently low price, (b) the quality of user
interfaces has increased, (c) the data management
problems have been solved and (d) the educational
level of farmers as concerns the use of computers
has been raised. Until these conditions are met the
applicational scope of the techniques is in re-
search, as discussed in Chapter IX.
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Summary

The main purpose of this thesis is to adapt the
Markov decision programming techniques to be
able to cope with the animal replacement problem
in a satisfactory way. The problems to be solved
are the dimensionality problem (i.e. that the size of
the state space tends to be so large that optimiza-
tion is prohibitive), the uniformity problem (i.e.
that the traits of animals are difficult to define and
measure) and problems caused by herd restraints,
as for instance a milk quota or a limited supply of
heifers or gilts. A secondary purpose is to illustrate
and discuss the applicational perspectives of the
techniques.

In Chapter II a systematic survey of the devel-
oped techniques is given in the framework of tradi-
tional Markov decision programming. The notion
of a hierarchic Markov process is mentioned as a
way of dealing with the dimensionality problem.
The uniformity problem is handled by a technique
based on Bayesian updating and the herd restraints
are partly solved by the introduction of a new cri-
terion of optimality (the milk quota) and partly by
a method called parameter iteration (the limited
supply of heifers).

In Chapter III the notion of a hierarchic Markov
process is explained. It is a series of Markov deci-
sion processes, called subprocesses, built together
in one Markov decision process called the main
process. The hierarchic structure is specially de-
signed to fit replacement models, which in the tra-
ditional formulation as ordinary Markov decision
processes, are usually very large. The basic theory
of hierarchic Markov processes is described and
examples are given of applications in replacement
models. The theory can be extended to fit a situa-
tion where the replacement decision depends on the
quality of the new asset available for replacement.

In Chapter IV a dairy cow replacement model
based on a hierarchic Markov process is presented.
In the model a cow is described in terms of lacta-
tion number, stage of lactation, the level of milk
yield during the previous and present lactation, the
length of the calving interval and the genetic class
defined from the breeding value of the father. The

criterion of optimality is the maximization of the
present value under an infinite planning horizon.
Revenues from milk, calves and replaced cows,
feed costs and costs of replacement heifers are
considered. The future profitability calculated
from the optimal solution is used for ranking of the
cows in the herd. The genetic class makes it pos-
sible to include the heifers available for replace-
ment and to let the replacement decision depend
on the genetic class of the heifers.

In Chapter V a new criterion of optimality in
Markov decision processes is discussed. The ob-
jective is to maximize the average net revenue per
unit of physical output (or input). The criterion is
relevant in some production models, where a re-
straint is imposed on the physical output (produc-
tion quota) or on an input factor (scarce resources).
An obvious application is in dairy cow replace-
ment models under milk quotas. Iteration cycles
are presented for ordinary completely ergodic
Markov decision processes and for hierarchic Mar-
kov processes. The consequences of the new crite-
rion is illustrated by a numerical example.

In Chapter VI the new criterion is applied to a
dairy cow replacement model under a milk quota,
and the results are compared to those under the
usual discounted net revenue criterion. Optimal re-
placement policies, future profitabilitics and rank-
ings under the two criteria are compared. It turns
out that culling should be less intensive under milk
quotas because of a smaller variation in future pro-
fitability. Considerable differences in future profi-
tability and ranking are found, and it is concluded
that it is important that the correct criterion is used
when milk quotas are in effect.

In Chapter VII the nature of the variation in the
traits of an animal is discussed. It is argued that the
variation may be described as a sum of a perma-
nent effect which is constant over time, only va-
rying among animals, and a temporary effect va-
rying over time for the same animal. Only the
sums of the permanent and temporary effects are
observable, but we have a prior knowledge descri-
bed by a probability distribution of the permanent
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effect. As observations of the sums are taken, the
knowledge on the true value of the permanent ef-
fect increases (i.e. the probability distribution
changes). Also a more general model, involving
several random traits cach being influenced by
several unobservable effects, is described. If the
permanent effects had been directly observable, an
optimal replacement policy might be determined
by a hierarchic Markov process (or an ordinary
Markov decision process in small models). On the
other hand, the updating of knowledge on the per-
manent effects may be handled in a causal proba-
bilistic net (Bayes belief net), but that method does
not provide an optimization technique. Therefore,
the Bayesian updating technique used in causal
probabilistic nets has been combined with the opti-
mization technique of a hierarchic Markov process
in order to solve the animal replacement problem
with variation in traits. The method is illustrated
by a numerical example which shows that the
benefits from updating of knowledge may be con-
siderable. Furthermore, the method is compared to
approaches in the literature, and it is argued that in
some cases it may reduce the size of the state
space in animal replacement models.

In Chapter VIII, the dairy herd is described as a
multi-component system, where the components
are the cows and heifers. The problem of finding
an optimal replacement policy to the multi-compo-
nent system is considered. The complication of the
multi-component model is that if the supply of hei-
fers is limited (i.e. the dairy farmer uses only
home-grown heifers), the replacement decision
concerning a cow does not only depend on the sta-
te of that particular cow, but also on the states of
the other cows and heifers in the herd. Initially it is
demonstrated that the multi-component replace-
ment problem may be formulated as an ordinary
Markov decision process. Unfortunately, the model
is far too large to be solved by any known me-
thods. Therefore, an approximate method combin-
ing dynamic programming and stochastic simula-
tion in the determination of a set of descriptive pa-
rameters is suggested. The parameters are used in
the calculation of the multi-component replace-
ment criterion for cows as well as for heifers. The
method has been tested by extensive simulations
under 100 different conditions concerning prices
and average milk yield of the herd. It is concluded
that when the replacement costs (price of a heifer
minus the price of a calf and the carcass value of a

170

cow) are small, the method improves the economic
results considerably compared to the usual models,
assuming unlimited supply of heifers. The informa-
tion concerning heifers, which is provided by the
method, makes it relevant even in cases where the
replacement costs are large. The basic idea of the
study may be relevant in a more general range of
problems involving replacement under some con-
straint.

In Chapter IX, the applicational perspectives of
the techniques are discussed. It is argued that they
may be applied as tools in the study of the traits
and conditions that influence the optimal policies
and as tools in comparative studies of operational
methods for application in commercial herds. The
following chapters (X and XI) are examples of
such applications. Direct application in commerci-
al herds is not realistic at present.

In Chapter X, the economic value of culling in-
formation is studied. The net returns to housing,
labour and management are calculated analytically
using three different replacement policies in the
presence and absence of a milk quota. The conclu-
sions are that in the absence of a milk quota there
are considerable benefits from using a decision
support system, but under a quota the benefits are
negligible if compared to the very simple policy of
only replacing cows which fail to conceive within
238 days. If a system based on calculations assum-
ing no quota is used under a quota, the dairy far-
mer will be directly misinformed. Decision sup-
port systems for culling should be specifically de-
signed for the quota situation where reductions of
costs are the most important means for improving
herd net returns.

In Chapter XI, operational methods for direct
application in commercial herds is studied. In or-
der to develop a ranking criterion, two criteria are
tested by means of stochastic simulation based on
random number generation. Under the first crite-
rion, the ranking is provided by a dynamic pro-
gramming model, but instead of herd individual
conditions a set of standard conditions is used. Un-
der the second criterion the cows are ranked
according to their expected net returns to housing,
labour and management during the next 12 months.
Both criteria are tested in the presence and absence
of a milk quota. The simulation results show that
both criteria are suitable for practical implementa-
tion in both situations. Thus the final choice de-
pends on other considerations including imple-
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mentation and operation costs as well as compre-
hensibility. A third criterion called expected maxi-
mum net returns, which has been suggested in
literature, was considered, but rejected for theoreti-
cal and empiriral reasons.

In Chapter XII, it is concluded that the hie-
rarchic Markov process, as an exact and fast me-
thod, has raised the upper limit of the size of the
state space to be dealt with. In that way it contri-
butes to the solution of the dimensionality pro-
blem, but still, the upper limit has not been elimi-
nated. The Bayesian updating technique is consider-
ed to be an important contribution to the solution

of the uniformity problem. It is expected to be use-
ful if diseases are included in the state space.
Furthermore, the method may in some cases redu-
ce the size of the state space without loss of infor-
mation. As concerns herd restraints, two methods
have been proposed. A new criterion of optimality
has been introduced in order to study the effect of
a milk quota, and the approximate parameter itera-
tion method has been successfully applied in a si-
tuation with shortage of heifers. As a future re-
search area methods for state space reduction are
requested.
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Dansk sammendrag

1. Indledning

I 1957 publicerede Bellman en bog med titlen
“Dynamic Programming”, hvori han presenterede
teorien for en ny numerisk metode til Igsning af
sekventielle beslutningsproblemer. De basale be-
greber er Bellmans optimalitetsprincip og rekursi-
ve ligningssystemer. Den grundleggende idé kan
illustreres som fglger:

Antag at vi betragter et system over en endelig el-
ler uendelig tidshorisont opdelt i perioder eller
trin. I hvert trin observerer vi systemets tilstand,
og vi ma treeffe en beslutning vedrgrende systemet.
Den valgte beslutning pévirker (deterministisk el-
ler stokastisk) den tilstand, vi kan observere i
naste trin, og afhengigt af tilstanden og den trufne
beslutning modtager vi en gjeblikkelig belgnning.
Den forventede sum af alle belgnninger fra og med
det nuvarende trin indtil slutningen af planleg-
ningshorisonten udtrykkes ved en veerdi funktion.
Sammenha&ngen mellem veardifunktionens verdi i
nuvarende og fplgende trin udtrykkes ved et s@t af
rekursive ligninger. Optimale beslutninger, der af-
hanger af trin og tilstand, fastlegges baglens trin
for trin som de, der maksimerer hgjresiderne af de
rekursive ligninger. En optimal strategi fastlagt pd
denne méide, opfylder kravene i Bellmans optima-
litetsprincip, som lyder (i oversattelse): “En opti-
mal strategi har den egenskab, at uanset udgangs-
tilstanden og den hertil trufne beslutning skal de
resterende beslutninger udggre en optimal strategi
med hensyn til den tilstand, der resulterer af den
forste beslutning” (Bellman, 1957 p. 83).

Gennem de falgende r publicerede Bellman ad-
skillige bgger om emnet (Bellman, 1961; Bellman
og Dreyfus, 1962; Bellman og Kalaba, 1965). Me-
toden vandt hurtigt mange fortalere, som fremfgrte
deres synspunkter pd en meget entusiastisk made,
og den forventedes at vere lgsningen pd en lang
rekke beslutningsproblemer fra den virkelige ver-
den. Forhibningerne var si store, og de fremfgrtes
med en sidan overbevisning, at Johnston (1965)
ironisk sammenlignede dynamisk programmering

med en ny religion. Samtidig var der andre, der
betragtede metoden som en temmelig triviel bereg-
ningsalgoritme.

Tilsvarende beretninger kan fortelles om andre
nye numeriske metoder som for eksempel linear
programmering. Som édrene gér, indkredses anven-
delsesomraderne dog, og oftest er konklusionen, at
metoden hverken er en alt-omfattende teknik eller
en trivialitet. Mellem disse ekstremer forbliver der
en forholdsvis snzver gruppe af problemer, hvor
metoden er et nyttigt redskab. Enten egner andre
problemer sig slet ikke til metoden, eller ogsé fin-
des der andre overlegne mader at lgse dem pa.

Dette viste sig ogsd at veere tilfeldet med dyna-
misk programmering. Et af metodens basale ele-
menter er den sckventielle fremgangsméade, som
naturligt medfgrer, at den egner sig bedst til se-
kventielle beslutningsproblemer. Udskiftningspro-
blemet er et oplagt eksempel pa et sddant problem.
Nér et anleg benyttes i en produktionsproces, vil
det vare relevant med regelmassige intervaller at
overveje, om det nuverende anleg bgr udskiftes,
eller om det med fordel kan beholdes endnu en pe-
riode. Dynamisk programmering er dermed et rele-
vant redskab, men hvis anleggets egenskaber er
veldefinerede, og deres pracise udvikling over ti-
den er kendt pd forhind, vil der vare analytiske
metoder, som kan benyttes til forud at fastlegge
det optimale udskiftningstidspunkt. Hvis pd den
anden side egenskaberne varierer over tid og fra
anlaeg til anleg, og de yderligere udviser stokastisk
variation (som det er tilfeeldet, ndr “anlegget” er et
husdyr), vil beslutningen om udskiftning athange
af de aktuelle observationer af egenskaberne. Dy-
namisk programmering er da en oplagt teknik til
brug ved fastleggelsen af en optimal strategi for
udskiftning.

Efter denne konstatering vil vi fortsaztte det hi-
storiske tilbageblik. I 1960 publicerede Howard en
bog om dynamisk programmering og Markov pro-
cesser. Bogens idé er at kombinere dynamisk pro-
grammering med det matematisk set velkendte be-
greb en “Markov kede”. En naturlig konsekvens
heraf er at benytte betegnelsen “Markov beslut-

175



A.R. Kristensen / Dansk sammendrag

ningsproces” for det kombinerede begreb. Howard
(1960) bidrog ogsa til lgsningen af problemet med
optimering over et uendeligt antal trin, hvor policy
iteration blev skabt som et alternativ til den trin-
vise rekursive metode, som Howard kaldte value
iteration. Policy iteration metoden drog fordel af
Markov kadens egenskaber, og der var tale om et
vaesentligt bidrag til udviklingen af optimerings-
teknikker.

Howard udviklede metoden under to optimali-
tetskriterier, som var h.h.v. maksimering af de for-
ventede totale diskonterede belgnninger og maksi-
mering af de forventede gennemsnitlige belgnnin-
ger pr. trin. Jewell (1963) prasenterede senere en
policy iteration metode til maksimering af de for-
ventede gennemsnitlige belgnninger pr. tidsenhed 1
semi-Markov beslutningsprocesser, hvor trinleng-
den er en stokastisk variabel. Howard (1971) har
beskrevet en value iteration metode for sddanne
processer.

Ogsé linexr programmering blev tidligt taget i
brug som en optimeringsteknik i Markov beslut-
ningsprocesser. F.eks. har Hadley (1964) beskre-
vel, hvordan en optimal strategi kan bestemmes
ved nevnte teknik, men sd vidt vides har den al-
drig veret anvendt i modeller for udskiftning af
husdyr. White og White (1989) har da ogsa kon-
kluderet, at policy iteration (undtagen i specielle
tilfelde) er en mere effektiv optimeringsteknik end
line®r programmering.

Siden fgrst omtalte bog af Howard (1960) er der
udfgrt en omfattende forskning i Markov beslut-
ningsprocesser. Der er opndet mange resultater
vedrgrende sammenhangen mellem de forskellige
optimeringsteknikker og optimalitetskriterier. Over-
sigter over disse resultater kan findes hos van der
Wal og Wessels (1985) si vel som hos White og
White (1989).

Allerede tre ar efter at Howard (1960) publice-
rede sin bog, offentliggjorde Jenkins og Halter
(1963) en anvendelse vedrgrende udskiftningspro-
blemet hos malkekger. Modellen omfattede laktati-
onsnummeret som den eneste egenskab (pd 12 ni-
veauer), og arbejdets blivende verdi var udeluk-
kende at illustrere, at Markov beslutningsprogram-
mering er et muligt redskab til Igsning af dette pro-
blem. F& ar senere publicerede Giaever (1966)
imidlertid et arbejde, som reprasenterer et virke-
ligt gennembrud med hensyn til anvendelse af me-
toden til udskiftningsproblemet hos husdyr (mal-
kekger). Han overvejede alle tre optimeringstek-
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nikker (value iteration, policy iteration og lineer
programmering), beskrev hvordan alle matemati-
ske forudsetninger kunne opfyldes og prasentere-
de en fremragende model til beskrivelse af en mal-
kekos produktion og foderforbrug. Arbejdet har al-
drig i litteraturen féet den omtale og plads, det for-
tjener (méske fordi athandlingen kun er publiceret
pa mikrofilm). 1 en oversigtsartikel af van Aren-
donk (1984) nzvnes arbejdet end ikke.

Adskillige forskere har gennem de fglgende 20
ar publiceret modeller for malkekoens udskiftning
baseret pad Markov beslutningsprogrammering,
men fra et metodemcessigt synspunkt har ingen af
disse bidraget med noget nyt sammenlignet med
Giaever (1966). Adskillige studier har dog bidra-
get pd anden méade. Smith (1971) viste, at den rela-
tivt lille model anvendt af Giaever (1966) med kun
106 tilstande pa ingen méde repraesenterede den
gvre graense. Hans tilstandsrum omfattede mere
end 15 000 tilstande. Kristensen og @stergaard
(1982) sdvel som van Arendonk (1985; 1986) og
van Arendonk og Dijkhuizen (1985) undersggte
prisernes og andre forudsatningers betydning pa
de optimale strategier. Andre arbejder (Killen og
Kearney, 1978; Reenberg, 1979) ndede neppe ni-
veauet fra selv Jenkins og Halter (1963). Selv om
udskiftningsproblemet hos sger er nzsten identisk
med det tilsvarende hos malkekger, er der kun
publiceret meget lidt om dette. Eneste kendte und-
tagelser er nye arbejder af Huirne (1990) og Jgr-
gensen (1992).

Et arbejde af Ben-Ari et al. (1983) fortjener
s@rlig opmaerksomhed. Metodemassigt er det ikke
bemarkelsesvaerdigt, men det udmarker sig ved,
at de vasentligste vanskeligheder i forbindelse
med udskiftningsproblemet hos husdyr blev identi-
ficeret og klart formuleret. Tre forhold nevntes:

1) Entydighed. Et dyrs egenskaber er vanskelige at
definere og méle. Ydermere er variationen af
de enkelte egenskaber relativ stor.

2) Reproduktionscyklus. Et dyrs produktion er
cyklisk. Der ma treeffes beslutning om i hvilken
cyklus, der skal udskiftes sdvel som Avorndr in-
den for cyklus.

3) Tilgang. Der er kun et begranset antal nye dyr
(keelvekvier eller gylte) til rddighed.

Det fgrste forhold dekker i virkeligheden over to
aspekter, nemlig entydighed, fordi egenskaberne er
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vanskelige at definere og méle, og variabilitet, for-
di egenskaberne varierer mellem dyr og over tid.
Det tredje forhold er et eksempel pd en bescet-
ningsbegrensning, hvormed menes en restriktion,
som knytter sig til bes@tningen som et hele og ikke
til det enkelte dyr. Andre eksempler pd beszt-
ningsbegransninger er en produktionskvota eller
en begrenset staldkapacitet. Vi vil derfor overveje
det mere generelle problem med sddanne besat-
ningsrestriktioner.

Konklusionen bliver saledes, at da forsknings-
aktiviteterne bag denne afhandling blev padbegyndt,
reprasenterede Giaever (1966) det metodemassige
niveau, og Ben-Ari et al. havde identificeret de
vasentligste vanskeligheder, som metoden bgr
lgse. Sammenholdes Giaevers model med disse
vanskeligheder, kan det konstateres, at den direkte
tager hgjde for variabilitets-problemet, og Kristen-
sen og Pstergaard (1982) sdvel som van Arendonk
(1985) har senere pavist, at problemet med den
cykliske produktion umiddelbart kan lgses uden
metodemessige problemer. Det viser sig dog, at for
at deekke variabiliteten ma egenskaberne repraesen-
teres med mange niveauer, og for at hindtere den
cykliske produktion, mé der indfgres en ckstra til-
standsvariabel, som reprasenterer tidspunktet i
cyklus. Begge forhold bidrager betydeligt til en
eksplosiv vakst af tilstandsrummet. Resultatet bli-
ver et dimensionsproblem. Selv om alle ngdvendi-
ge betingelser for en Markov beslutningsproces er
opfyldt, bliver en optimering i praksis uoverkom-
melig selv pd moderne computere. Vanskelighe-
derne vedrgrende entydighed og besatningsbe-
grensningerne blev ikke lgst med modellen fra
Giaever (1966).

Formélet med denne afhandling er at tilpasse
teknikkerne for Markov beslutningsprogramme-
ring pa en sddan méde, at udskiftningsproblemet
vedrgrende husdyr kan behandles p4 tilfredsstillen-
de vis. De vanskeligheder, der skal Igses (helt eller
delvist) er identificeret som dimensionsproblemet,
entydighedsproblemet og problemerne vedrgrende
besztningsbegransninger. Et sekundeart formal er
at illustrere og diskutere de anvendelsesmeassige
perspektiver af teknikkerne. Alle numeriske resul-
tater i afhandlingen vedrgrer malkekger, men Mar-
kov beslutningsprogrammering er for nyligt ogsi
taget 1 brug i forbindelse med sger (se f.eks.
Huirne 1990 og Jgrgensen 1992). Eftersom ud-
skiftningsproblemet hos sger ikke adskiller sig me-
get fra det tilsvarende hos kger, vil de samme me-

todemassige problemer melde sig, hvorfor de
opndede resultater ogsa er relevante i so-model-
ler.

2. Sammendrag af de enkelte kapitlers
resultater

Kapitel II giver en systematisk oversigt over de
udviklede teknikker i relation til rammerne for tra-
ditionel Markov beslutningsprogrammering. Be-
grebet en hierarkisk Markov proces kan hédndtere
dimensionsproblemet, og en teknik baseret pé bay-
esiansk opdatering kan behandle éntydighedspro-
blemet. Besatningsrestriktionerne 1gses dels (mal-
kekvoten) med introduktion af et nyt optimalitets-
kriterium og dels (begrenset tilgang af kelve-
kvier) med en metode kaldet parameter iteration.

Kapitel TIT forklarer begrebet hierarkiske Mar-
kov processer. Der er tale om en serie af Markov
beslutningsprocesser kaldet underprocesser, som
bygges sammen i én Markov beslutningsproces,
der betegnes som hovedprocessen. Den hierarkiske
struktur er specielt designet med henblik pd ud-
skiftningsmodeller, der i traditionel formulering
som almindelige Markov beslutningsprocesser
normalt er meget store. Kapitlet beskriver den ba-
sale teori for hierarkiske Markov processer, og gi-
ver eksempler pé anvendelse i udskiftningsmodel-
ler. Teorien kan udvides til at daekke en situation,
hvor beslutningen om udskiftning athenger af
kvaliteten af det nye aktiv, som overvejes indsat i
stedet for det nuvarende.

Kapitel IV prasenterer en model for malkeko-
ens udskiftning baseret pd en hierarkisk Markov
proces. Modellen beskriver en ko ved dens laktati-
onsnuminer, laktationsstadium, malkeydelsen i fo-
regdende og nuvarende laktation, k&lvningsinter-
vallets l&engde og det genetiske niveau udtrykt ved
faderens avlsvardi. Optimalitetskriteriet er maksi-
mering af nutidsverdien under uvendelig planleg-
ningshorisont. Indtaegter fra malk, kalve og udsat-
terkger samt udgifter til foder og kelvekvier tages
i betragtning. Den fremtidige profitabilitet bereg-
net ud fra den optimale lgsning anvendes til ind-
byrdes rangering af kgerne i en bes@tning. Det ge-
netiske niveau ggr det muligt at inddrage kalve-
kvierne i denne rangering og séledes lade udskift-
ningsbeslutningen afh@nge af kelvekviernes af-
stamning.
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Kapitel V diskuterer et nyt optimalitetskriterium
til brug i en Markov beslutningsproces. Mélet er at
maksimere det gennemsnitlige nettoudbytte pr.
produkt- eller faktorenhed. Kriteriet er relevant i
forbindelse med visse produktionsmodeller, hvor
der er en begra@nsning pé produktionen (kvota) el-
ler pa en faktor (knap ressource). Et oplagt anven-
delsesomrade er i udskiftningsmodeller for malke-
koen under en malkekvota. Der prasenteres opti-
meringscykler for almindelige Markov beslut-
ningsprocesser sdvel som for hierarkiske Markov
processer. Et numerisk eksempel illustrerer konse-
kvenserne af at anvende det nye kriterium.

Kapitel VI anvender det nye kriterium i en ud-
skiftningsmodel for malkekoen under en malke-
kvota, og sammenligner resultaterne med de tilsva-
rende under det s@dvanlige diskonterede nettoud-
bytte-kriterium. Optimale strategier, fremtidige
profitabiliteter og rangeringer sammenlignes. Det
viser sig, at udskiftningen bgr veere mindre inten-
siv under en malkekvota pd grund af en noget
mindre variation i den fremtidige profitabilitet. Be-
tydelige forskelle konstateres ogsd i den indbyrdes
rangering, og det konkluderes, at det er vasentligt,
at det korrekte kriterium anvendes ved produktion
under en kvota.

Kapitel VII diskuterer selve naturen af den kon-
staterede variabilitet i dyrs egenskaber og argu-
menterer for, at variationen kan beskrives som en
sum af en permanent del, som er konstant over tid
og kun varierer mellem dyr, og en midlertidig ef-
fekt, som varierer over tiden for det samme dyr.
Kun summen af den permanente og midlertidige
pévirkning kan observeres, men der vil typisk veare
en a priori viden i form af en sandsynlighedsforde-
ling for den permanente pavirkning. Regelmassige
observationer af summen gger den til radighed
verende viden om den permanente pavirkning
(d.v.s. @ndrer sandsynlighedsfordelingen). Kapitlet
beskriver ogsd en mere generel model med obser-
vation af flere egenskaber, som hver iser er under
indflydelse af flere ikke-observerbare pavirknin-
ger. Hvis den permanente pavirkning var direkte
observerbar, kunne en optimal strategi uden videre
bestemmes ved hjzlp af en hierarkisk Markov pro-
ces (eller en traditionel Markov beslutningsproces
i sm& modelier). P4 den anden side kan opdaterin-
gen af den foreliggende viden om den permanente
pavirkning héndteres i et kausalt probabilistisk net,
men i sd fald rades der ikke over en optimerings-
teknik. Derfor kombineres den bayesianske opda-
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teringsteknik med optimeringsteknikken for hierar-
kiske Markov processer med henblik pa at lgse ud-
skiftningsproblemet vedrgrende husdyr, hvor egen-
skabernes manglende entydighed er et problem. Et
numerisk eksempel illustrerer metoden og viser, at
gevinsten ved opdatering kan vere betydelig.
Ydermere sammenlignes metoden med anvendte
fremgangsmader i litteraturen, og der argumente-
res for, at i visse tilfelde kan den medvirke til re-
duktion af tilstandsrummet uden tab af information.

Kapitel VII beskriver en kvagbesatning som
et multi-komponent system, hvor de enkelte kom-
ponenter er kgerne og kvierne. Problemet med
fastleggelsen af en optimal udskiftningsstrategi i
et sddant system overvejes. Komplikationen bestar
i, at hvis tilgangen af kelvekvier er begraenset (nar
malkeproducenten kun anvender egne kvier), af-
henger udskiftningsbeslutningen for en ko ikke
blot af dennes egne egenskaber, men ogsd af de
gvrige kgers og kviers egenskaber. Indledningsvis
pévises det, at multi-komponent problemet princi-
pielt kan beskrives som en sedvanlig Markov be-
slutningsproces. Desvarre er modellen dog alt for
stor til at en optimal strategi kan bestemmes med
nogen kendt teknik. Kapitlet prasenterer derfor en
approksimativ metode, som kombinerer Markov
beslutningsprogrammering og stokastisk simule-
ring til bestemmelse af et st beskrivende parame-
tre. Parametrene bliver brugt til fastleggelse af et
multi-komponent udskiftningskriterium for malke-
kgerne sdvel som kvierne. Metoden er testet med
omfattende simuleringer under 100 forskellige be-
tingelser vedrgrende priser og gennemsnitsydelse.
Det konkluderes, at nar de direkte udskiftningsom-
kostninger (prisen pa en kalvekvie minus prisen
for en kalv og prisen pd en ung udsaztterko) er
smd, forbedrer metoden det gkonomiske resultat
betydeligt sammenlignet med sedvanlige metoder,
hvor ubegrenset tilgang af kelvekvier forudsattes.
Metodens afledte informationer vedrgrende kvier-
ne er relevant selv 1 en situation, hvor udskift-
ningsomkostningerne er store. Metodens basale idé
kan vare relevant for en mere generel kreds af pro-
blemer, som involverer udskiftning under en eller
anden form for bes@tningsbegransning.

Kapitel IX diskuterer de anvendelsesmassige
perspektiver af de udviklede teknikker og argu-
menterer for, at de kan finde anvendelse 1 undersg-
gelser af hvilke egenskaber og betingelser, der pa-
virker de optimale strategier samt i sammenlignen-
de studier af operationelle metoder til direkte an-
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vendelse i praksis. De fglgende kapitler (X og XI)
er eksempler pd sadanne anvendelser. Direkte an-
vendelse af teknikkerne er ikke realistisk pd nu-
vaerende tidspunkt.

Kapitel X undersgger den gkonomiske vaerdi af
udskiftningsinformation. Restbelgb til stald, arbej-
de og driftsledelse beregnes analytisk under tre
forskellige udskiftningsstrategier med og uden
malkekvota. Det konkluderes, at uden malke-
kvota vil nytteveerdien af et beslutningsstgtie sy-
stem vare betydelig, men under kvotering er nytte-
vardien forsvindende sammenlignet med blot at
fglge en strategi med udskiftning af alle kger, som
ikke bliver dregtige inden for de fgrste 238 dage
efter kaelvning. Beslutningsstgtte systemer for ud-
skiftning mé& designes specielt til kvota-situatio-
nen, hvor reducerede omkostninger er det mest be-
tydningsfulde middel til forggelse af det samlede
restbelgb. Hvis et beslutningsstgtte system ignore-
rer betydningen af en mazlkekvota, vil malkepro-
ducenten direkte blive misinformeret.

Kapitel XI sammenligner operationelle metoder
til direkte anvendelse i praksis. Med sigte pd ud-
vikling af et rangeringskriterium, testes to metoder
ved hjzlp af stokastisk simulering med generering
af pseudo-tilfeldige tal. Ved den ene metode frem-
bringes rangeringen ved Markov beslutningspro-
grammering, men i stedet for besaetningsspecifikke
forudsetninger anvendes ct st af standardforud-
setninger. Ved den anden metode rangeres kgeme
i henhold til deres forventede restbelgb til stald, ar-
bejde og driftsledelse gennem de fglgende 12
maneder. Begge metoder er testet med og uden
melkekvotering. Simuleringsresultaterne viser, at
begge metoder er egnet til praktisk anvendelse i
begge situationer. Det endelige valg vil derfor af-
henge af andre overvejelser, herunder gennem-
skueligheden samt omkostningerne ved implemen-
tering og drift. En tredje metode baseret pa begre-
bet “forventet maksimalt restbelgb” (foresléet 1 lit-
teraturen) blev overvejet, men af teoretiske og em-
piriske rsager blev den forkastet.

3. Konklusioner og videre perspektiver

Indledningen angav, at det primare formal var at
tilpasse teknikkerne for Markov beslutningspro-
grammering pa en sddan méde, at udskiftningspro-
blemet vedrgrende husdyr kunne behandles pa en

tilfredsstillende made. Det kan nu konstateres, at
de tre identificerede vanskeligheder i denne forbin-
delse dimensionsproblemet, entydighedsproblemet
og problemerne vedrgrende bescetningsrestriktio-
ner indbyrdes pavirker hinanden. Som pavist i ka-
pitel VII kan lgsningen af entydighedsproblemet
ogsa i visse tilfeelde medvirke til 1gsning af dimen-
sionsproblemet gennem reduktion af tilstandsrum-
met, og som det fremgar af kapitel VIII, kan be-
setningsrestriktioner ggre dimensionsproblemet
verre, idet alle dyr md vurderes simultant. Derfor
vil lgsning af problemerne vedrgrende besztnings-
restriktioner ogsa i nogle modeller bidrage til lgs-
ning af dimensionsproblemet.

Det vasentligste bidrag til Igsning af dimensi-
onsproblemet er dog formuleringen af hierarkiske
Markov processer. De beregningsmeassige fordele
ved teknikken er illustreret ved teoretiske overve-
jelser samt et numerisk cksempel i kapitel II. De
vesentligste fordele ved teknikken kan sammen-
fattes saledes:

1) Metoden er eksakt.

2) Metoden er, som det fremgar af kapitel II, langt
hurtigere end value iteration (d.v.s. den traditio-
nelle dynamisk programmerings teknik).

3) Metoden ggr det, som det fremgér af kapitel X,
muligt direkte at beregne konsekvenserne af en
vilkérlig strategi. Ydermere er det muligt direk-
te at beregne en lang rekke tekniske og gkono-
miske resultater under en given strategi som be-
skrevet i flere kapitler (f.eks. arlig udskiftnings-
procent, arlig mealkeydelse, gennemsnitlig
kuldstgrrelse etc.).

Eftersom metoden er hurtigere end sedvanlige tek-
nikker, bidrager den til lgsning af dimensionspro-
blemet, fordi optimering af langt stgrre modeller
bliver realistisk med et overkommeligt tidsforbrug.
P4 den anden side Igses problemet ikke. Grenser-
ne for det mulige haeves, men fjernes ikke.

Med hensyn til éntydighedsproblemet, foreslas
den bayesianske teknik fra kapitel VII. Teknikkens
styrke er, at den opstiller en ramme for hindtering
af mangelfuld viden. Ved et hvilket som helst ni-
veau af viden er det muligt at valge en optimal be-
slutning, under de foreliggende omstendigheder
(med mangelfuld viden). Den bayesianske frem-
gangsméde synes derfor at vare i bedre overens-
stemmelse med virkelighedens vilkér. Det forven-
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tes, at metoden is@r vil vaere relevant i forbindelse
med inddragelse af kategoriske egenskaber som
sygdomme i beslutningsgrundlaget som skitseret i
kapitel VIL Dette perspektiv ma dog afvente test
pé et realistisk datagrundlag, fgr der kan drages
nogen endelig konklusion. Med hensyn til anven-
delse i forbindelse med sadvanlige kvantitative
egenskaber som malkeydelse og kuldstgrrelse for-
ventes metoden at kunne blive et vasentligt bidrag
til Igsning af entydighedsproblemet, fordi den ggr
det muligt at skeine mellem variation fordrsaget af
forskellige kilder, og séledes kan tage hgjde for
selve variationens natur. Ydermere kan metoden 1
visse tilfelde medvirke til reduktion af tilstands-
rummet uden tab af information.

To forskellige besatningsbegraensninger er
overvejet i denne athandling. Den ene begrens-
ning er en malkekvota, som der er taget hgjde for
ved indfgrelse af et alternativt optimalitetskriteri-
um, hvor det gennemsnitlige nettoudbytte pr. kg.
malk maksimeres (kapitel V og VI). Det nye krite-
rium Igser det mere langsigtede rangeringsproblem
for en bes®tning, der producerer malk under kvo-
tering, men det Igser ikke det helt kortsigtede pro-
blem med hensyn til pd et vilkarligt tidspunkt at
kunne beslutte den optimale besatningsstgrrelse.
For at kunne Igse ogsd dette problem vil det vere
ngdvendigt at ty til parameter iterations metoden,
som 1 kapitel VIII er anvendt i forbindelse med en
anden begrensning pd besatningsniveau, nemlig
en begranset tilgang af kaelvekvier. Det er pavist,
at i en situation med mangel pa kalvekvier er me-
toden overlegen i forhold til anvendelse af saed-
vanlige enkelt-dyr modeller, men der er ikke tale
om en alt omfattende teknik, som uden videre kan
overfgres direkte til andre typer af besatningsbe-
greensninger. Den grundleggende idé er at drage
nytte af det faktum, at en optimal strategi for pro-
blemet uden restriktion allerede er kendt og deref-
ter at overveje, hvordan begrensningen logisk set
ma pavirke den totale nutidsverdi (eller relative
veerdi) for hele besetningen. Disse grundireek for-
ventes at kunne anvendes ogsa under andre besat-
ningsbegraensninger, men i hvert enkelt tilfeelde re-
sterer stadig et mgjsommeligt arbejde med identifi-
kation af relevante funktioner og parametre. Séle-
des kan problemerne vedrgrende besatningsbe-
graensninger ikke siges at vare Igst, men der er op-
stillet nogle rammer, som i det konkrete tilfzlde
kan danne udgangspunkt for en lgsning.

Et sekundeert formél med denne afhandling er at
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illustrere og diskutere de anvendelsesmassige per-
spektiver for de udviklede teknikker. I kapitel IX
identificeredes anvendelsesomraderne som vearen-
de forskning, udvikling af operationelle metoder
Jor praktisk anvendelse og direkte anvendelse i
praksis. Som illustreret 1 kapitlerne X og XI kan
det konkluderes, at teknikkerne er nyttige redska-
ber i den forskning, der studerer de betingelser og
egenskaber, som pavirker de optimale strategier.
Yderligere finder de anvendelse 1 komparative stu-
dier, hvor operationelle metoder udvikles til prak-
tisk anvendelse (jvf. kapitel XI). Hvad angér direk-
te anvendelse i praksis, mi det antages, at dette
teknisk set vil blive muligt. Hvorvidt det ogsa er
hensigtsmaessigt, athenger af resultaterne af sa-
danne komparative studier. P4 nuvarende tids-
punkt kan der ikke drages nogen endelig konklusi-
on pa dette punkt.

I de fremtidige forskningsaktiviteter pa omradet,
bgr dimensionsproblemet gives hgj prioritet. To al-
ternative veje kan valges. Ad den ene vej arbejdes
der videre pd yderligere at have grensen for det
mulige med hensyn til tilstandsrummets stgrrelse.
Den dag, hvor en multi-komponent model som den
i kapitel VIII beskrevne kan Igses eksakt, er dog
meget {jern, medmindre der ggres en virkelig epo-
keggrende opdagelse. Yderligere er det et spgrgs-
mél, om ikke graensen for den menneskelige evne
til at fatte og overskue modeller af en sadan
stgrrelse overskrides forinden. En anden vej kan
valges: At udvikle metoder til transformation af
tilstandsrummet, sé stgrrelsen begranses uden (el-
ler med kun lille) tab af information. En yderligere
udbygning af de bayesianske teknikker kunne veaere
en mulighed, men langt mere forskning pa dette
omrade vil vaere gnskelig.

Ogsa spgrgsmdlet om, hvordan oplysninger om
sundhedsstatus kan inddrages i beslutningsgrund-
laget, bgr studeres narmere. Igen er de bayesian-
ske teknikker en mulighed. Det forekommer ogsa
oplagt at problemet med besetningsbegrensninger
ma vare et vasentligt element i fremtiden, efter-
som husdyrproduktion i den virkelige verden fin-
der sted i bes@tninger. Forestillingen om en simpel
sammenligning af et enkelt dyr med en mulig kel-
vekvie/gylt er uholdbar i en situation, hvor alle dy-
rene konkurrerer om den samme knappe ressource
eller produktionskvota.

De navnte fremtidige forskningsomrader viser,
at der stadig er behov for en indsats pé det metodi-
ske omrade, hvis formalet med dette arbejde skulle
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opfyldes fuldstendigt. Det skal dog bemearkes, at
selv om alle metodiske problemer blev lgst, og f@gl-
gelig det teknisk definerede formél opfyldtes, var
arbejdet stadig ikke fuldfgrt. Det forekommer na-
turligt ogsd at overveje det i et lidt videre perspek-
tiv. P4 leengere sigt er det naturligvis tanken, at de
udviklede teknikker skal kunne stgtte husdyrbru-
geren i dennes konkrete beslutninger om hvilke
dyr, der skal udsazttes. Med andre ord kunne tek-
nikkerne udggre den centrale del af et beslutnings-
stgtte system.

Ingen af de udviklede metoder er pa nuverende
tidspunkt implementeret i noget beslutningsstgtte
system, og det er derfor naturligt at overveje, hvad
arsagen kan vere. Situationen er pd ingen maéade
unik. P4 trods af mindst to drtiers forskning i opti-
merings- og simuleringsmodeller er s godt som
intet ndet ud til husdyrbrugeren i form af fungeren-
de beslutningsstgtte systemer. En international
kongres for computer teknologi i 1990 var tenk
som en prasentation af vellykkede praktiske an-
vendelser. Efter kongressen udtalte en deltager iro-
nisk, at nogle af anvendelserne ganske rigtigt var
vellykkede, medens andre var praktiske, og atter
andre var blot anvendelser. Med andre ord synes
vellykkede praktiske anvendelser at vere undta-
gelser. Titlen pd den fglgende kongres i samme se-
rie kan oversattes til “Computer-teknologi sgger
brugere”, og antyder, at dette er den generelle op-
fattelse.

Den generelle mangel pa vellykkede beslut-
ningsstgtte systemer i husdyrproduktionen ggr det
naturligt at overveje, hvad der 1 almindelighed be-
tinger succesen af et sidant system. Det fglgende
vil vere en gennemgang af ngdvendige betingelser
(flaskehalse) for succes. (Der er siledes ikke ngd-
vendigvis tale om tilstreekkelige betingelser). Der
vil blive skelnet mellem om betingelserne vedrgrer
hardware, software, metode eller de knytter sig til
husdyrbrugeren.

Kravene til hardware vil til dels ga pé egenska-
ber som hurtighed, disk plads og intern hukommel-
se, idet nogle metoder krazver endog meget krafti-
ge maskiner. Pa korr sigt kan disse egenskaber
teenkes at vaere flaskehalse 1 udviklingen af beslut-
ningsstgtte systemer, men som illustreret 1 kapitel
IX forbedres disse specifikationer meget hurtigt i
takt med introduktion af nye modeller, s& pa langt
sigt vil det nxppe vare pa dette felt, der opstir
problemer. En anden flaskehals p& hardware omra-
det er kommunikationsudstyr, der ggr det muligt at

modtage cksterne data om f.cks. klassificering af
dyr og malk fra slagteri og mejeri savel som inter-
ne data som f.eks. temperatur og konduktivitet af
melk eller slagtekyllingers vagt fra sensorer. Der
kan ogsé vare behov for at sende data fra compu-
teren til automatisk udstyr som malkerobotter og
foderautomater. Ogséd pé dette omrade gir udvik-
lingen dog meget hurtig, s& pd lengere sigt vil der
nzppe heller opstd problemer pa dette omrade. Det
er dog for hele hardware/software omrédet en be-
tingelse, at prisen er sd lav, at en investering i ud-
styret er rentabel.

P4 software omradet ma der dels udvikles de
ngdvendige applikationer, hvorved forstds pro-
grammering af optimeringsmetoder og datahdndte-
ring, og dels let forstaelige brugerflader. Iszr be-
tydningen af en god brugerflade er ofte blevet
overset, fordi der er fokuseret pd programmering
af de udviklede metoder. Ikke desto mindre vil et
ellers godt beslutningsstgtte system nappe have
nogen chance p& markedet, hvis ikke brugerfladen
er hensigtsmassig. Et hgjt niveau i software udvik-
lingen sikres formentlig bedst gennem en erken-
delse af, at denne del af arbejdet bgr overlades til
specialister 1 programmering (f.eks. ansat af
rddgivningstjenesten). Forskeren, der udviklede
metoden, er normalt ikke ekspert i programmering,
og ydermere er han eller hun langt fra uvildig i
vurderingen af de anvendelsesmassige perspekti-
ver. Pd den anden side kraver en hurtig implemen-
tering af nye metoder, at der er en tat kontakt mel-
lem forskere og radgivningstjeneste.

Inden for forskningen er hovedvagten tilsynela-
dende blevet lagt pd udvikling af metoder. Det
gaelder iser “optimeringsmetoder” i en bred betyd-
ning, der ogsd dakker cksempelvis ekspertsyste-
mer og simulering. Forskerne har udviklet adskilli-
ge metoder og prototyper og har normalt ikke ve-
ret tilbageholdende med selv at prise disses mulig-
heder i praksis, men som navnt har meget lidt néet
husdyrbrugeren. Eftersom nytteverdien af meto-
derne i flere tilfeelde har veret dokumenteret, kan
det konkluderes, at mangel pd optimeringsmetoder
neppe er en flaskehals i udbredelsen af beslut-
ningsstgtte systemer. Lige sd vigtig (men mindre
udforsket) er datahdndteringen. Som resultat af
den teknologiske udvikling antages antallet af data
kilder at stige. Sensorer og eksterne kommunikati-
onslinjer forventes at kunne bidrage med hidtl
usete mangder af registreringer. Bearbejdningen af
disse registreringer til data og informationer kre-
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ver udvikling af nye metoder til opgaver som fil-
trering, organisering af data baser og estimation af
parametre pa besetningsniveau.

Sidst, men ikke mindst, bgr Ausdyrbrugerens si-
tuation overvejes. Er produktionen stor nok til at
retferdigggre kgbet af et beslutningsstgtte system,
og tillader gkonomien det? Selv hvis svaret er ja,
kan husdyrbrugerens uddannelse og manglende er-
faring med computere vaere et problem. Dette er
nok den mest begrensende faktor i udbredelsen af
beslutningsstgtte systemer. Manglende computer-
erfaring kan delvist athjelpes ved efteruddannelse
og gode brugerflader, men det mé erkendes, at der
kan gd en generation, fgr gennemsnits producenten
er virkelig fortrolig med computere og opfatter
dem som lige sd naturlige redskaber som papir og
blyant. Uddannelse er ogsd vasentlig i en bredere
betydning end blot brug af computere. For eksem-
pel kan manglende kendskab til statistisk teori
vere et problem i relation til stokastisk modelle-
ring, konfidensgraenser, fglsomheds overvejelser
etc.

Denne korte gennemgang af ngdvendige betin-
gelser for et vellykket beslutningsstgtte system sy-
nes at vise, at det ikke er overraskende, at de er si
f4. Hovedproblemet er, at der har varet en omfat-
tende forskning i metodeudvikling uden at niveau-
et af software (herunder is@r brugerflader) og ud-
dannelse er fulgt med.

Efter disse generelle overvejelser er det naturligt
at vende tilbage til de konkrete teknikker, der
prasenteres i denne athandling, og overveje hvilke
problemer der ville opstd ved implementering i et
beslutningsstgtte system. Som ved alle andre ek-
sempler i de foregiende Kkapitler tages der ud-
gangspunkt i en malkekvagsbesetning under dan-
ske forhold.

De udviklede metoder stiller store krav til com-
puterens regnekraft. Allerede dette forhold kunne
give anledning til problemer i forbindelse med en
implementering. Hvis det implementeres pa et cen-
tralt anleg, ma melkeproducenten betale for tids-
forbruget, hvilket antageligt vil veere for dyrt. Val-
ges en decentral Igsning stiller det meget store
krav tl regnehastighed og intern hukommelse,
hvilket uundgéeligt gor anskaffelsen dyr. Desuden
vil der vare et kommunikationsproblem, fordi op-
lysningerne om de enkelte kgers prastationer er
lagret centralt i kvegdatabasen pd Landbrugets
EDB Central. En stabil forbindelse (f.eks. i form af
et modem) til denne database vil sdledes vaere ngd-
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vendig. Alene disse hardware behov viser, at pd
nuveerende tidspunkt er en direkte implementering
i et beslutningsstgtte system udelukket. P4 den an-
den side forekommer det sandsynligt, at hardware
problemerne vil blive Igst inden for en overskuelig
fremtid, og at den decentrale lgsning i si fald vil
veare at foretrekke.

P4 nuverende tidspunkt findes heller intet soft-
ware (il direkte implementering. Det er pi ingen
méde en banal opgave at omsatte de matematisk
formulerede metoder til effektive computer algorit-
mer uden overflgdigt tids- og lagerforbrug, men pé
den anden side vil det naturligvis vere muligt for
en dygtig programmgr. Som altid bgr brugerfladen
prioriteres hgjt, og fremkomsten af ‘“Bedrifts-
lgsningen” i Danmark ggr, at der i det mindste fin-
des en felles standard, hvilket er af stor verdi i
forbindelse med oplering og uddannelse af meal-
keproducenten. Det kan derfor konkluderes, at det
vil vere teknisk muligt at fremstille det ngdvendi-
ge software.

Som navnt reprasenterer denne athandling et
bidrag til udvikling af optimeringsteknikker. Data-
héndteringsproblemet bergres kun indirekte i kapi-
tel VII, hvor opdatering af viden om det enkelte
dyrs egenskaber diskuteres. Som modellerne fore-
ligger nu, er alle parametre estimeret én gang for
alle, og den eneste tilpasning til den enkelte besat-
ning er angivelse af et besaetningsniveau for mal-
keydelse. Det ma forventes, at parametre estimeret
pé besztningsniveau vil vere bedre med mindre
residualvarians og dermed mere precise pradikti-
oner (il fglge. Imidlertid er mengden af data fra en
enkelt besetning normalt for lille til en praecis esti-
mation af parametre.

En Igsning af dette problem kunne vere en mere
intensiv brug af Bayesianske metoder. Nar beslut-
ningsstgtte systemet f@rst tages i brug, anvendes et
s@t af standard parametre, men efterhdnden som
der ggres observationer i besetningen opdateres de
oprindelige parametre ved hjelp af Bayes’ regel,
sa de efter nogle {4 &r vil afspejle forholdene i den
enkelte besatning. En sddan fremgangsméde kan
betragtes som en generalisering af metoden be-
skrevet i kapitel VII, hvor dog kun parametre rela-
teret til enkelte dyr opdateredes. En ngdvendig for-
udsatning for at ggre brug af en sidan fremgangs-
méde er, at problemerne vedrgrende data organise-
ring og filtrering lgses. Et personligt synspunkt er,
at inddragelse af Bayesianske metoder i beslut-
ningsstgtte systemer vil blive et hovedomride i det
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neste Artis forskning, og hvis det lykkes, kan det
fgre til det endelige gennembrud for sddanne sy-
stemer i husdyrbruget.

Konklusionen er, at en implementering af de
praesenterede teknikker i et beslutningsstgtte sy-
stem ikke kan forventes inden for de nzrmeste fa
ar. Det vil forst vere relevant, nér (a) det ngdven-
dige hardware er tilgengeligt til en rimelig pris,
(b) kvaliteten af brugerflader i almindelighed er
forbedret, (c) datah&ndteringsproblemet er lgst og

(d) husdyrbrugernes uddannelsesniveau vedrgren-
de brug af computere er forbedret. Indtil disse be-
tingelser er opfyldt, vil anvendelserne vare be-
graenset til forskningen som beskrevet i kapitel IX.
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