Modelling the economic impact of three lameness causing diseases using herd and cow level evidence

Jehan Ettema, Søren Østergaard, Anders Ringgaard Kristensen

Katarina Nielsen Dominiak
Department of Large Animal Sciences

Introduction

- Lameness causing diseases are reported to vary between 21% and 70% in modern dairy farms
- Consequences of lameness are
 - Animal welfare problems
 - Reduced productivity
 - Reduced reproductive performance
 - High economic losses - estimated from € 104/case to € 192/case per cow-year

Three lameness causing diseases are focused on in this study:
- Digital Dermatitis (DD), curable, lasts 42 days
- Interdigital Hyperplasia (IH), chronic
- Claw Horn Disease (CHD), lasts for the rest of the lactation
Objective

What are the consequences in economy and productivity when the risk of three lameness causing diseases in a herd is reduced by 50% calculated by a Monte Carlo simulation model (SimHerd IV) where the input parameters are expressed by hyper-distributions.

Using hyper-distributions to describe disease risks is new (using SimHerd)

Materials and methods

Characteristics of SimHerd IV

- Dynamic (weekly time-steps)
- Monte Carlo simulation
- Stochastic
- Mechanistic
- Repeated

Simulates production and state changes in dairy herds including young stock (heifers)

The state of a cow or heifer is defined by nine parameters

- Age
- Parity
- Lactation stage
- Milk yield
- Body weight
- Culling status
- Reproductive status (estrus and pregnancy)
- Somatic Cell Count (SCC)
- Disease status
Materials and methods

Characteristics of SimHerd IV

The nine parameters are updated for each cow and heifer every week by drawing random samples from a probability distribution.

Hence, the production and input consumption for the herd is calculated.

Results are found

The process is repeated.

Hyper-distributions

Cow specific probability of becoming diseased - diseases status

9 state-of-nature parameters representing disease risks (3 disease risks × parity 1, 2, 3) are described by a joint posterior distribution - not fixed estimates!

This posterior distribution is based on a combination of:
- Prior knowledge of disease prevalence in the herd
- Different levels of knowledge

For every replica of the model a disease risk was drawn from the joint posterior distribution

The model is run 1000 times.
Materials and methods

Deterministic calculations:

Fixed general values like length of diseases, prices and costs of diseases are included

Materials and methods

43% conception rate
50% estrus detection rate

Results – half risk

FH herd with average reproduction increased total gross-margin by € 24,840 (€ 123/cow-year)

FH herd with poor reproduction increased total gross-margin by € 38,820 (€ 143/cow-year)

More evidence/knowledge -> higher effect on gross-margin
Discussion
Demonstrates a consistent way of using field data on disease prevalence for calculating a cow specific disease risk
Cow trimming is expensive and should be considered in a full economic evaluation
Even though 9 parameters were described by hyper-distributions – more than 1000 parameters are still fixed - uncertainties are underestimated
Disease prevalence is more varied than either 40% or 7%

Conclusion
The use of hyper-distributions describing disease risk was demonstrated
Uncertainties in input parameters are reflected in the uncertainties in the model’s output (a risk) – important in decision support
This model represents an improvement in representing uncertainties although they are still underestimated

Thank you